TensorFlow打印tensor值的实现方法

最近一直在用TF做CNN的图像分类,当softmax层得到预测结果后,我希望能够看到预测结果,以便和标签之间进行比较。特此补上,以便自己记忆。

我现在通过softmax层得到变量train_logits,如果我直接执行print(train_logits)时,得到的结果如下(因为我是134类分类,所以结果是(1,134)维):

这貌似什么都看不出来。

其实tensorflow提供输出中间值方法方便debug。

这个函数就是[tf.Print]。

tf.Print(
input_,
data,
message=None,
first_n=None,
summarize=None,
name=None
)

参数:

input_: 通过此op的一个tensor.

data: 当此op被计算之后打印输出的tensor list。

message: 错误消息的前缀,是一个string。

first_n: 只记录first_n次. 总是记录负数;这是个缺省.

summarize: 对每个tensor只打印的条目数量。如果是None,对于每个输入tensor只打印3个元素。

name: op的名字.

返回值:

和input_相同的tensor.

将print(train_logits)修改为sess.run(tf.Print(train_logits,[train_logits]))后,得到的结果如下图:

发现值已经能够打印啦!但是只能输出3个条目,这是因为参数summarize默认只打印3个参数!

将sess.run(tf.Print(train_logits,[train_logits]))修改为sess.run(tf.Print(train_logits,[train_logits],summarize=134))后(我是134类分类),得到的结果如下图:

这样就能成功地打印tensor的中间结果了!以后调参、查看模型效果就直观多了!

以上这篇TensorFlow打印tensor值的实现方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • tensorflow: 查看 tensor详细数值方法

    问题 tensor详细数值 不能直接print打印: import tensorflow as tf x = tf.constant(1) print x 输出: Tensor("Const:0", shape=(), dtype=int32) 原因: print只能打印输出shape的信息,而要打印输出tensor的值,需要借助 tf.Session,tf.InteractiveSession. 因为我们在建立graph的时候,只建立 tensor 的 结构形状信息 ,并没有 执行

  • Tensorflow 查看变量的值方法

    定义一个变量,直接输出会输出变量的属性,并不能输出变量值.那么怎么输出变量值呢?请看下面得意 import tensorflow as tf biases=tf.Variable(tf.zeros([2,3]))#定义一个2x3的全0矩阵 sess=tf.InteractiveSession()#使用InteractiveSession函数 biases.initializer.run()#使用初始化器 initializer op 的 run() 方法初始化 'biases' print(se

  • TensorFlow打印tensor值的实现方法

    最近一直在用TF做CNN的图像分类,当softmax层得到预测结果后,我希望能够看到预测结果,以便和标签之间进行比较.特此补上,以便自己记忆. 我现在通过softmax层得到变量train_logits,如果我直接执行print(train_logits)时,得到的结果如下(因为我是134类分类,所以结果是(1,134)维): 这貌似什么都看不出来. 其实tensorflow提供输出中间值方法方便debug. 这个函数就是[tf.Print]. tf.Print( input_, data, m

  • 解决tensorflow打印tensor有省略号的问题

    先上代码: import tensorflow as tf x = tf.ones(shape=[100, 200], dtype=tf.int32, name='x') y = tf.zeros(shape=[2, 3], dtype=tf.float32, name='y') with tf.Session() as sess: print(sess.run([x, y])) 输出结果如下: 如果我调试的时候想查看省略号代表的值是什么 只需要改成如下代码就行: import tensorfl

  • tensorflow 打印内存中的变量方法

    法一: 循环打印 模板 for (x, y) in zip(tf.global_variables(), sess.run(tf.global_variables())): print '\n', x, y 实例 # coding=utf-8 import tensorflow as tf def func(in_put, layer_name, is_training=True): with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):

  • TensorFlow的权值更新方法

    一. MovingAverage权值滑动平均更新 1.1 示例代码: def create_target_q_network(self,state_dim,action_dim,net): state_input = tf.placeholder("float",[None,state_dim]) action_input = tf.placeholder("float",[None,action_dim]) ema = tf.train.ExponentialMo

  • tensorflow 获取变量&打印权值的实例讲解

    在使用tensorflow中,我们常常需要获取某个变量的值,比如:打印某一层的权重,通常我们可以直接利用变量的name属性来获取,但是当我们利用一些第三方的库来构造神经网络的layer时,存在一种情况:就是我们自己无法定义该层的变量,因为是自动进行定义的. 比如用tensorflow的slim库时: <span style="font-size:14px;">def resnet_stack(images, output_shape, hparams, scope=None

  • TensorFlow打印输出tensor的值

    在学习TensorFlow的过程中,我们需要知道某个tensor的值是什么,这个很重要,尤其是在debug的时候.也许你会说,这个很容易啊,直接print就可以了.其实不然,print只能打印输出shape的信息,而要打印输出tensor的值,需要借助class tf.Session, class tf.InteractiveSession.因为我们在建立graph的时候,只建立tensor的结构形状信息,并没有执行数据的操作. 一 class tf.Session  运行tensorflow操

  • tensorflow: variable的值与variable.read_value()的值区别详解

    问题 查看 tensorflow api manual 时,看到关于 variable.read_value() 的注解如图: 那么在 tensorflow 中,variable的值 与 variable.read_value()的值 到底有何区别? 实验代码 # coding=utf-8 import tensorflow as tf # Create a variable. w = tf.Variable(initial_value=10., dtype=tf.float32) sess =

  • Python Tensor FLow简单使用方法实例详解

    本文实例讲述了Python Tensor FLow简单使用方法.分享给大家供大家参考,具体如下: 1.基础概念 Tensor表示张量,是一种多维数组的数据结构.Flow代表流,是指张量之间通过计算而转换的过程.TensorFLow通过一个计算图的形式表示编程过程,数据在每个节点之间流动,经过节点加工之后流向下一个节点. 计算图是一个有向图,其组成如下:节点:代表一个操作.边:代表节点之间的数据传递和控制依赖,其中实线代表两个节点之间的数据传递关系,虚线代表两个节点之间存在控制相关. 张量是所有数

  • Tensorflow中的dropout的使用方法

    Hinton在论文<Improving neural networks by preventing co-adaptation of feature detectors>中提出了Dropout.Dropout用来防止神经网络的过拟合.Tensorflow中可以通过如下3中方式实现dropout. tf.nn.dropout def dropout(x, keep_prob, noise_shape=None, seed=None, name=None): 其中,x为浮点类型的tensor,ke

随机推荐