用python完成一个分布式事务TCC

前言:

什么是分布式事务?银行跨行转账业务是一个典型分布式事务场景,假设A需要跨行转账给B,那么就涉及两个银行的数据,无法通过一个数据库的本地事务保证转账的ACID,只能够通过分布式事务来解决。

分布式事务就是指事务的发起者、资源及资源管理器和事务协调者分别位于分布式系统的不同节点之上。在上述转账的业务中,用户A-100操作和用户B+100操作不是位于同一个节点上。本质上来说,分布式事务就是为了保证在分布式场景下,数据操作的正确执行。

什么是TCC分布式事务,TCCTryConfirmCancel三个词语的缩写,最早是由 Pat Helland 于 2007 年发表的一篇名为《Life beyond Distributed Transactions:an Apostate's Opinion》的论文提出。

1、TCC组成

TCC分为3个阶段

  • Try 阶段:尝试执行,完成所有业务检查(一致性), 预留必须业务资源(准隔离性)
  • Confirm 阶段:如果所有分支的Try都成功了,则走到Confirm阶段。Confirm真正执行业务,不作任何业务检查,只使用 Try 阶段预留的业务资源
  • Cancel 阶段:如果所有分支的Try有一个失败了,则走到Cancel阶段。Cancel释放 Try 阶段预留的业务资源。

TCC分布式事务里,有3个角色,与经典的XA分布式事务一样:

  • AP/应用程序,发起全局事务,定义全局事务包含哪些事务分支
  • RM/资源管理器,负责分支事务各项资源的管理
  • TM/事务管理器,负责协调全局事务的正确执行,包括ConfirmCancel的执行,并处理网络异常

如果我们要进行一个类似于银行跨行转账的业务,转出(TransOut)和转入(TransIn)分别在不同的微服务里,

一个成功完成的TCC事务典型的时序图如下:

2、TCC实践

对于前面的跨行转账操作,最简单的做法是,在Try阶段调整余额,在Cancel阶段反向调整余额,Confirm阶段则空操作。这么做带来的问题是,如果A扣款成功,金额转入B失败,最后回滚,把A的余额调整为初始值。在这个过程中如果A发现自己的余额被扣减了,但是收款方B迟迟没有收到余额,那么会对A造成困扰。

更好的做法是,Try阶段冻结A转账的金额,Confirm进行实际的扣款,Cancel进行资金解冻,这样用户在任何一个阶段,看到的数据都是清晰明了的。

下面我们进行一个TCC事务的具体开发

目前可用于TCC的开源框架,主要为Java语言,其中以seata为代表。我们的例子采用Python语言,使用的分布式事务框架为 https://github.com/yedf/dtm ,它对分布式事务的支持非常优雅。下面来详细讲解TCC的组成

我们首先创建两张表,一张是用户余额表,一张是冻结资金表,建表语句如下:

CREATE TABLE dtm_busi.`user_account` (
  `id` int(11) AUTO_INCREMENT PRIMARY KEY,
  `user_id` int(11) not NULL UNIQUE ,
  `balance` decimal(10,2) NOT NULL DEFAULT '0.00',
  `create_time` datetime DEFAULT now(),
  `update_time` datetime DEFAULT now()
);

CREATE TABLE dtm_busi.`user_account_trading` (
  `id` int(11) AUTO_INCREMENT PRIMARY KEY,
  `user_id` int(11) not NULL UNIQUE ,
  `trading_balance` decimal(10,2) NOT NULL DEFAULT '0.00',
  `create_time` datetime DEFAULT now(),
  `update_time` datetime DEFAULT now()
);

trading表中,trading_balance记录正在交易的金额。

我们先编写核心代码,冻结/解冻资金操作,会检查约束balance+trading_balance >= 0,如果约束不成立,执行失败

def tcc_adjust_trading(cursor, uid, amount):
  affected = utils.sqlexec(cursor, "update dtm_busi.user_account_trading set trading_balance=trading_balance + %d where user_id=%d and trading_balance + %d + (select balance from dtm_busi.user_account where id=%d) >= 0" % (amount, uid, amount, uid))
  if affected == 0:
    raise Exception("update error, maybe balance not enough")

然后是调整余额

def tcc_adjust_balance(cursor, uid, amount):
  utils.sqlexec(cursor, "update dtm_busi.user_account_trading set trading_balance = trading_balance+ %d where user_id=%d" %( -amount, uid))
  utils.sqlexec(cursor, "update dtm_busi.user_account set balance=balance+%d where user_id=%d" %(amount, uid))

下面我们来编写具体的Try/Confirm/Cancel的处理函数

@app.post("/api/TransOutTry")
def trans_out_try():
  # 事务以及异常处理
  tcc_adjust_trading(c, out_uid, -30)
  return {"dtm_result": "SUCCESS"}

@app.post("/api/TransOutConfirm")
def trans_out_confirm():
  # 事务以及异常处理
  tcc_adjust_balance(c, out_uid, -30)
  return {"dtm_result": "SUCCESS"}

@app.post("/api/TransOutCancel")
def trans_out_cancel():
  # 事务以及异常处理
  tcc_adjust_trading(c, out_uid, 30)
  return {"dtm_result": "SUCCESS"}

@app.post("/api/TransInTry")
def trans_in_try():
  # 事务以及异常处理
  tcc_adjust_trading(c, in_uid, 30)
  return {"dtm_result": "SUCCESS"}

@app.post("/api/TransInConfirm")
def trans_in_confirm():
  # 事务以及异常处理
  tcc_adjust_balance(c, in_uid, 30)
  return {"dtm_result": "SUCCESS"}

@app.post("/api/TransInCancel")
def trans_in_cancel():
  # 事务以及异常处理
  tcc_adjust_trading(c, in_uid, -30)
  return {"dtm_result": "SUCCESS"}

到此各个子事务的处理函数已经OK了,然后是开启TCC事务,进行分支调用

@app.get("/api/fireTcc")
def fire_tcc():
    # 发起tcc事务
    gid = tcc.tcc_global_transaction(dtm, utils.gen_gid(dtm), tcc_trans)
    return {"gid": gid}

# tcc事务的具体处理
def tcc_trans(t):
    req = {"amount": 30} # 业务请求的负荷
    # 调用转出服务的Try|Confirm|Cancel
    t.call_branch(req, svc + "/TransOutTry", svc + "/TransOutConfirm", svc + "/TransOutCancel")
    # 调用转入服务的Try|Confirm|Cancel
    t.call_branch(req, svc + "/TransInTry", svc + "/TransInConfirm", svc + "/TransInCancel")

至此,一个完整的TCC分布式事务编写完成。

如果您想要完整运行一个成功的示例,那么按照dtmcli-py-sample项目的说明tcc的例子即可

3、TCC的回滚

假如银行将金额准备转入用户2时,发现用户2的账户异常,返回失败,会怎么样?我们修改代码,模拟这种情况:

@app.post("/api/TransInTry")
def trans_in_try():
  # 事务以及异常处理
  tcc_adjust_trading(c, in_uid, 30)
  return {"dtm_result": "FAILURE"}

这是事务失败交互的时序图:

这个跟成功的TCC差别就在于,当某个子事务返回失败后,后续就回滚全局事务,调用各个子事务的Cancel操作,保证全局事务全部回滚。

4、TCC网络异常

TCC在整个全局事务的过程中,可能发生各类网络异常情况,典型的是空回滚、幂等、悬挂,由于TCC的异常情况,和SAGA、可靠消息等事务模式有相近的地方,因此我们把所有异常的解决方案统统放在这篇文章 分布式事务最经典的七种解决方案 的异常处理章节进行讲解

5、小结

在这篇文章里,我们介绍了TCC的理论知识,也通过一个例子,完整给出了编写一个TCC事务的过程,涵盖了正常成功完成,以及成功回滚的情况。相信读者通过这边文章,对TCC已经有了深入的理解。

关于分布式事务更多更全面的知识,请参考 分布式事务最经典的七种解决方案

文中使用的例子节选自 yedf/dtm ,支持多种事务模式:TCC、SAGA、XA、事务消息 跨语言支持,已支持 golang、python、PHP、nodejs、Java等语言的客户端。提供子事务屏障功能,优雅解决幂等、悬挂、空补偿等问题。

(0)

相关推荐

  • 讲解如何利用 Python完成 Saga 分布式事务

    目录 1.分布式事务 2.SAGA 3.SAGA 实践 4.处理网络异常 5.处理回滚 6.小结 银行跨行转账业务是一个典型分布式事务场景,假设 A 需要跨行转账给 B,那么就涉及两个银行的数据,无法通过一个数据库的本地事务保证转账的 ACID,只能够通过分布式事务来解决. 1.分布式事务 分布式事务在分布式环境下,为了满足可用性.性能与降级服务的需要,降低一致性与隔离性的要求,一方面遵循 BASE 理论: 基本业务可用性( Basic Availability ) 柔性状态( Soft sta

  • 带你用Python实现Saga 分布式事务的方法

    目录 分布式事务 SAGA SAGA实践 处理网络异常 处理回滚 小结 银行跨行转账业务是一个典型分布式事务场景,假设 A 需要跨行转账给 B,那么就涉及两个银行的数据,无法通过一个数据库的本地事务保证转账的 ACID,只能够通过分布式事务来解决. 分布式事务 分布式事务在分布式环境下,为了满足可用性.性能与降级服务的需要,降低一致性与隔离性的要求,一方面遵循 BASE 理论: 基本业务可用性( Basic Availability ) 柔性状态( Soft state ) 最终一致性( Eve

  • 用python完成一个分布式事务TCC

    前言: 什么是分布式事务?银行跨行转账业务是一个典型分布式事务场景,假设A需要跨行转账给B,那么就涉及两个银行的数据,无法通过一个数据库的本地事务保证转账的ACID,只能够通过分布式事务来解决. 分布式事务就是指事务的发起者.资源及资源管理器和事务协调者分别位于分布式系统的不同节点之上.在上述转账的业务中,用户A-100操作和用户B+100操作不是位于同一个节点上.本质上来说,分布式事务就是为了保证在分布式场景下,数据操作的正确执行. 什么是TCC分布式事务,TCC是Try.Confirm.Ca

  • 详解Java TCC分布式事务实现原理

    概述 之前网上看到很多写分布式事务的文章,不过大多都是将分布式事务各种技术方案简单介绍一下.很多朋友看了还是不知道分布式事务到底怎么回事,在项目里到底如何使用. 所以这篇文章,就用大白话+手工绘图,并结合一个电商系统的案例实践,来给大家讲清楚到底什么是 TCC 分布式事务. 业务场景介绍 咱们先来看看业务场景,假设你现在有一个电商系统,里面有一个支付订单的场景. 那对一个订单支付之后,我们需要做下面的步骤: 更改订单的状态为"已支付" 扣减商品库存 给会员增加积分 创建销售出库单通知仓

  • 关于MySQL与Golan分布式事务经典的七种解决方案

    目录 1.基础理论 1.1 事务 1.2 分布式事务 2.分布式事务的解决方案 2.1 两阶段提交/XA 2.2 SAGA 2.3 TCC 2.4 本地消息表 2.5 事务消息 2.6 最大努力通知 2.7 AT事务模式 3.异常处理 3.1 异常情况 3.2 子事务屏障 3.3 子事务屏障原理 3.4 子事务屏障小结 4.分布式事务实践 4.1 一个SAGA事务 4.2 处理网络异常 4.3 处理回滚 5.总结 前言: 随着业务的快速发展.业务复杂度越来越高,几乎每个公司的系统都会从单体走向分

  • Java中JDBC事务与JTA分布式事务总结与区别

    Java事务的类型有三种:JDBC事务.JTA(Java Transaction API)事务.容器事务.常见的容器事务如Spring事务,容器事务主要是J2EE应用服务器提供的,容器事务大多是基于JTA完成,这是一个基于JNDI的,相当复杂的API实现.所以本文暂不讨论容器事务.本文主要介绍J2EE开发中两个比较基本的事务:JDBC事务和JTA事务. JDBC事务 JDBC的一切行为包括事务是基于一个Connection的,在JDBC中是通过Connection对象进行事务管理.在JDBC中,

  • 一文搞明白Java Spring Boot分布式事务解决方案

    目录 前言 1. 什么是反向补偿 2. 基本概念梳理 3. 什么是两阶段提交 4. AT 模式 5. TCC 模式 6. XA 模式 7. Saga 模式 前言 分布式事务,咱们前边也聊过很多次了,网上其实也有不少文章在介绍分布式事务,不过里边都会涉及到不少专业名词,看的大家云里雾里,所以还是有一些小伙伴在微信上问我. 那么今天,我就再来一篇文章,和大家捋一捋这个话题.以下的内容主要围绕阿里的 seata 来和大家解释. 1. 什么是反向补偿 首先,来和大家解释一个名词,大家在看分布式事务相关资

  • SpringCloud Alibaba使用Seata处理分布式事务的技巧

    Seata简介 在传统的单体项目中,我们使用@Transactional注解就能实现基本的ACID事务了. 但是前提是: 1) 数据库支持事务(如:MySQL的innoDB引擎) 2) 所有业务都在同一个数据库中执行 随着微服务架构的引入,需要对数据库进行分库分表,每个服务拥有自己的数据库,这样传统的事务就不起作用了,那么我们如何保证多个服务中数据的一致性呢? 这样就出现了分布式事务,而Seata就是为微服务架构而生的一种高性能.易于使用的分布式事务解决方案. Seata 中有三个基础组件: T

  • tcc分布式事务框架体系解析

    目录 前言碎语 以电商下单为例 订单服务: 库存服务: 支付服务: hmily事务框架怎么做的? 实现HmilyTransactionInterceptor接口 dubbo的aspect抽象实现 dubbo的HmilyTransactionInterceptor实现 启动事务处理器处理逻辑如下 需要注意三个地方 参数者事务处理器 文末结语 前言碎语 楼主之前推荐过2pc的分布式事务框架LCN.今天来详细聊聊TCC事务协议. 首先我们了解下什么是tcc,如下图 tcc分布式事务协议控制整体业务事务

  • Springboot-dubbo-fescar 阿里分布式事务的实现方法

    大家可以自行百度下阿里分布式事务,在这里我就不啰嗦了.下面是阿里分布式事务开源框架的一些资料,本文是springboot+dubbo+fescar的集成. 快速开始 https://github.com/alibaba/fescar/wiki/Quick-Start GIT地址 https://github.com/alibaba/fescar 1.sql CREATE TABLE `undo_log` ( `id` bigint(20) NOT NULL AUTO_INCREMENT, `br

随机推荐