Python 装饰器深入理解

讲 Python 装饰器前,我想先举个例子,虽有点污,但跟装饰器这个话题很贴切。

每个人都有的内裤主要功能是用来遮羞,但是到了冬天它没法为我们防风御寒,咋办?我们想到的一个办法就是把内裤改造一下,让它变得更厚更长,这样一来,它不仅有遮羞功能,还能提供保暖,不过有个问题,这个内裤被我们改造成了长裤后,虽然还有遮羞功能,但本质上它不再是一条真正的内裤了。于是聪明的人们发明长裤,在不影响内裤的前提下,直接把长裤套在了内裤外面,这样内裤还是内裤,有了长裤后宝宝再也不冷了。装饰器就像我们这里说的长裤,在不影响内裤作用的前提下,给我们的身子提供了保暖的功效。

谈装饰器前,还要先要明白一件事,Python 中的函数和 Java、C++不太一样,Python 中的函数可以像普通变量一样当做参数传递给另外一个函数,例如:

def foo():
  print("foo")

def bar(func):
  func()

bar(foo)

正式回到我们的主题。装饰器本质上是一个 Python 函数或类,它可以让其他函数或类在不需要做任何代码修改的前提下增加额外功能,装饰器的返回值也是一个函数/类对象。它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等场景,装饰器是解决这类问题的绝佳设计。有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码到装饰器中并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。

先来看一个简单例子,虽然实际代码可能比这复杂很多:

def foo():
  print('i am foo')

现在有一个新的需求,希望可以记录下函数的执行日志,于是在代码中添加日志代码:

def foo():
  print('i am foo')
  logging.info("foo is running")

如果函数 bar()、bar2() 也有类似的需求,怎么做?再写一个 logging 在 bar 函数里?这样就造成大量雷同的代码,为了减少重复写代码,我们可以这样做,重新定义一个新的函数:专门处理日志 ,日志处理完之后再执行真正的业务代码

def use_logging(func):
  logging.warn("%s is running" % func.__name__)
  func()

def foo():
  print('i am foo')

use_logging(foo)

这样做逻辑上是没问题的,功能是实现了,但是我们调用的时候不再是调用真正的业务逻辑 foo 函数,而是换成了 use_logging 函数,这就破坏了原有的代码结构, 现在我们不得不每次都要把原来的那个 foo 函数作为参数传递给 use_logging 函数,那么有没有更好的方式的呢?当然有,答案就是装饰器。

简单装饰器

def use_logging(func):

def wrapper():
    logging.warn("%s is running" % func.__name__)
return func()  # 把 foo 当做参数传递进来时,执行func()就相当于执行foo()
return wrapper

def foo():
  print('i am foo')

foo = use_logging(foo) # 因为装饰器 use_logging(foo) 返回的时函数对象 wrapper,这条语句相当于 foo = wrapper
foo()          # 执行foo()就相当于执行 wrapper()

use_logging 就是一个装饰器,它一个普通的函数,它把执行真正业务逻辑的函数 func 包裹在其中,看起来像 foo 被 use_logging 装饰了一样,use_logging 返回的也是一个函数,这个函数的名字叫 wrapper。在这个例子中,函数进入和退出时 ,被称为一个横切面,这种编程方式被称为面向切面的编程。

@ 语法糖

如果你接触 Python 有一段时间了的话,想必你对 @ 符号一定不陌生了,没错 @ 符号就是装饰器的语法糖,它放在函数开始定义的地方,这样就可以省略最后一步再次赋值的操作。

def use_logging(func):

def wrapper():
    logging.warn("%s is running" % func.__name__)
return func()
return wrapper

@use_logging
def foo():
  print("i am foo")

foo()

如上所示,有了 @ ,我们就可以省去foo = use_logging(foo)这一句了,直接调用 foo() 即可得到想要的结果。你们看到了没有,foo() 函数不需要做任何修改,只需在定义的地方加上装饰器,调用的时候还是和以前一样,如果我们有其他的类似函数,我们可以继续调用装饰器来修饰函数,而不用重复修改函数或者增加新的封装。这样,我们就提高了程序的可重复利用性,并增加了程序的可读性。

装饰器在 Python 使用如此方便都要归因于 Python 的函数能像普通的对象一样能作为参数传递给其他函数,可以被赋值给其他变量,可以作为返回值,可以被定义在另外一个函数内。

*args、**kwargs

可能有人问,如果我的业务逻辑函数 foo 需要参数怎么办?比如:

def foo(name):
  print("i am %s" % name)

我们可以在定义 wrapper 函数的时候指定参数:

def wrapper(name):
    logging.warn("%s is running" % func.__name__)
return func(name)
return wrapper

这样 foo 函数定义的参数就可以定义在 wrapper 函数中。这时,又有人要问了,如果 foo 函数接收两个参数呢?三个参数呢?更有甚者,我可能传很多个。当装饰器不知道 foo 到底有多少个参数时,我们可以用 *args 来代替:

def wrapper(*args):
    logging.warn("%s is running" % func.__name__)
return func(*args)
return wrapper

如此一来,甭管 foo 定义了多少个参数,我都可以完整地传递到 func 中去。这样就不影响 foo 的业务逻辑了。这时还有读者会问,如果 foo 函数还定义了一些关键字参数呢?比如:

def foo(name, age=None, height=None):
  print("I am %s, age %s, height %s" % (name, age, height))

这时,你就可以把 wrapper 函数指定关键字函数:

def wrapper(*args, **kwargs):
# args是一个数组,kwargs一个字典
    logging.warn("%s is running" % func.__name__)
return func(*args, **kwargs)
return wrapper

带参数的装饰器

装饰器还有更大的灵活性,例如带参数的装饰器,在上面的装饰器调用中,该装饰器接收唯一的参数就是执行业务的函数 foo 。装饰器的语法允许我们在调用时,提供其它参数,比如@decorator(a)。这样,就为装饰器的编写和使用提供了更大的灵活性。比如,我们可以在装饰器中指定日志的等级,因为不同业务函数可能需要的日志级别是不一样的。

def use_logging(level):
def decorator(func):
def wrapper(*args, **kwargs):
if level == "warn":
        logging.warn("%s is running" % func.__name__)
elif level == "info":
        logging.info("%s is running" % func.__name__)
return func(*args)
return wrapper

return decorator

@use_logging(level="warn")
def foo(name='foo'):
  print("i am %s" % name)

foo()

上面的 use_logging 是允许带参数的装饰器。它实际上是对原有装饰器的一个函数封装,并返回一个装饰器。我们可以将它理解为一个含有参数的闭包。当我 们使用@use_logging(level=”warn”)调用的时候,Python 能够发现这一层的封装,并把参数传递到装饰器的环境中。

@use_logging(level=”warn”)等价于@decorator

类装饰器

没错,装饰器不仅可以是函数,还可以是类,相比函数装饰器,类装饰器具有灵活度大、高内聚、封装性等优点。使用类装饰器主要依靠类的__call__方法,当使用 @ 形式将装饰器附加到函数上时,就会调用此方法。

class Foo(object):
def __init__(self, func):
    self._func = func

def __call__(self):
print ('class decorator runing')
    self._func()
print ('class decorator ending')

@Foo
def bar():
print ('bar')

bar()

functools.wraps

使用装饰器极大地复用了代码,但是他有一个缺点就是原函数的元信息不见了,比如函数的docstring、__name__、参数列表,先看例子:

# 装饰器
def logged(func):
def with_logging(*args, **kwargs):
print func.__name__   # 输出 'with_logging'
print func.__doc__    # 输出 None
return func(*args, **kwargs)
return with_logging

# 函数
@logged
def f(x):
"""does some math"""
return x + x * x

logged(f)

不难发现,函数 f 被with_logging取代了,当然它的docstring,__name__就是变成了with_logging函数的信息了。好在我们有functools.wraps,wraps本身也是一个装饰器,它能把原函数的元信息拷贝到装饰器里面的 func 函数中,这使得装饰器里面的 func 函数也有和原函数 foo 一样的元信息了。

from functools import wraps
def logged(func):
  @wraps(func)
def with_logging(*args, **kwargs):
print func.__name__   # 输出 'f'
print func.__doc__    # 输出 'does some math'
return func(*args, **kwargs)
return with_logging

@logged
def f(x):
"""does some math"""
return x + x * x

装饰器顺序

一个函数还可以同时定义多个装饰器,比如:

@a
@b
@c
def f ():
  pass

它的执行顺序是从里到外,最先调用最里层的装饰器,最后调用最外层的装饰器,它等效于

f = a(b(c(f)))

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

(0)

相关推荐

  • 详解Python装饰器由浅入深

    装饰器的功能在很多语言中都有,名字也不尽相同,其实它体现的是一种设计模式,强调的是开放封闭原则,更多的用于后期功能升级而不是编写新的代码.装饰器不光能装饰函数,也能装饰其他的对象,比如类,但通常,我们以装饰函数为例子介绍其用法.要理解在Python中装饰器的原理,需要一步一步来.本文尽量描述得浅显易懂,从最基础的内容讲起. (注:以下使用Python3.5.1环境) 一.Python的函数相关基础 第一,必须强调的是python是从上往下顺序执行的,而且碰到函数的定义代码块是不会立即执行它的,只

  • 老生常谈Python进阶之装饰器

    函数也是对象 要理解Python装饰器,首先要明白在Python中,函数也是一种对象,因此可以把定义函数时的函数名看作是函数对象的一个引用.既然是引用,因此可以将函数赋值给一个变量,也可以把函数作为一个参数传递或返回.同时,函数体中也可以再定义函数. 装饰器本质 可以通过编写一个纯函数的例子来还原装饰器所要做的事. def decorator(func): def wrap(): print("Doing someting before executing func()") func(

  • python装饰器初探(推荐)

    一.含有一个装饰器 #encoding: utf-8 ############含有一个装饰器######### def outer(func): def inner(*args, **kwargs):#要装饰f1(),这里用这俩形式参数,可以接受任意个参数,不管f1定义几个参数 print "1" r = func(*args, **kwargs)#这里要用func,不要用f1 print "2" return r return inner @outer #这里ou

  • 深入学习Python中的装饰器使用

    装饰器 vs 装饰器模式 首先,大家需要明白的是使用装饰器这个词可能会有不少让大家担忧的地方,因为它很容易和设计模式这本书里面的装饰器模式发生混淆.曾经一度考虑给这个新的功能取一些其它的术语名称,但是装饰器最终还是胜出了. 的确,你可以使用python装饰器来实现装饰器模式,但这绝对是它很小的一部分功能,有点暴殄天物.对于python装饰器,我觉得它是最接近宏的存在. 宏的历史 宏有有着非常悠久的历史,不过大多数人可能会有使用C语言预处理宏的经验.但是,对于C语言里的宏来说,它存在一些问题,(1

  • 深入理解Python装饰器

    装饰器简介: 装饰器(decorator)是一种高级Python语法.装饰器可以对一个函数.方法或者类进行加工.在Python中,我们有多种方法对函数和类进行加工,比如在Python闭包中,我们见到函数对象作为某一个函数的返回结果.相对于其它方式,装饰器语法简单,代码可读性高.因此,装饰器在Python项目中有广泛的应用. 装饰器最早在Python 2.5中出现,它最初被用于加工函数和方法这样的可调用对象(callable object,这样的对象定义有__call__方法).在Python 2

  • Python编程中装饰器的使用示例解析

    装饰函数和方法 我们先定义两个简单的数学函数,一个用来计算平方和,一个用来计算平方差: # get square sum def square_sum(a, b): return a**2 + b**2 # get square diff def square_diff(a, b): return a**2 - b**2 print(square_sum(3, 4)) print(square_diff(3, 4)) 在拥有了基本的数学功能之后,我们可能想为函数增加其它的功能,比如打印输入.我们

  • 深入理解Python中装饰器的用法

    因为函数或类都是对象,它们也能被四处传递.它们又是可变对象,可以被更改.在函数或类对象创建后但绑定到名字前更改之的行为为装饰(decorator). "装饰器"后隐藏了两种意思--一是函数起了装饰作用,例如,执行真正的工作,另一个是依附于装饰器语法的表达式,例如,at符号和装饰函数的名称. 函数可以通过函数装饰器语法装饰: @decorator # ② def function(): # ① pass 函数以标准方式定义.① 以@做为定义为装饰器函数前缀的表达式②.在 @ 后的部分必须

  • 详解Python中最难理解的点-装饰器

    本文将带领大家由浅入深的去窥探一下,这个装饰器到底是何方神圣,看完本篇,装饰器就再也不是难点了. 一.什么是装饰器 网上有人是这么评价装饰器的,我觉得写的很有趣,比喻的很形象 每个人都有的内裤主要是用来遮羞,但是到了冬天它没法为我们防风御寒,肿木办? 我们想到的一个办法就是把内裤改造一下,让它变得更厚更长,这样一来,它不仅有遮羞功能,还能提供保暖,不过有个问题,这个内裤被我们改造成了长裤后,虽然还有遮羞功能,但本质上它不再是一条真正的内裤了.于是聪明的人们发明长裤 在不影响内裤的前提下,直接把长

  • Python的装饰器用法学习笔记

    在python中常看到在定义函数是使用@func. 这就是装饰器, 装饰器是把一个函数作为参数的函数,常常用于扩展已有函数,即不改变当前函数状态下增加功能. def run(): print "I'm run." 我有这么一个函数, 我想知道这个函数什么时候开始什么时候结束. 我应该这么写 def run(): print time.ctime() print "I'm run." print time.ctime() 但是如果不允许修改函数的话就需要装饰器了 de

  • Python 装饰器深入理解

    讲 Python 装饰器前,我想先举个例子,虽有点污,但跟装饰器这个话题很贴切. 每个人都有的内裤主要功能是用来遮羞,但是到了冬天它没法为我们防风御寒,咋办?我们想到的一个办法就是把内裤改造一下,让它变得更厚更长,这样一来,它不仅有遮羞功能,还能提供保暖,不过有个问题,这个内裤被我们改造成了长裤后,虽然还有遮羞功能,但本质上它不再是一条真正的内裤了.于是聪明的人们发明长裤,在不影响内裤的前提下,直接把长裤套在了内裤外面,这样内裤还是内裤,有了长裤后宝宝再也不冷了.装饰器就像我们这里说的长裤,在不

  • 一些关于python 装饰器的个人理解

    装饰器 本质是一个接受参数为函数的函数. 作用:为一个已经实现的方法添加额外的通用功能,比如日志记录.运行计时等. 举例 1.不带参数的装饰器,不用@ # 不带参数的装饰器 def deco_test(func): def wrapper(*args, **kwargs): print("before function") f = func(*args, **kwargs) print("after function") return f return wrappe

  • 如何正确理解python装饰器

    一.闭包 要想了解装饰器,首先要了解一个概念,闭包.什么是闭包,一句话说就是,在函数中再嵌套一个函数,并且引用外部函数的变量,这就是一个闭包了.光说没有概念,直接上一个例子. def outer(x): def inner(y): return x + y return inner print(outer(6)(5)) ----------------------------- >>>11 如代码所示,在outer函数内,又定义了一个inner函数,并且inner函数又引用了外部函数ou

  • python装饰器实例大详解

    一.作用域 在python中,作用域分为两种:全局作用域和局部作用域. 全局作用域是定义在文件级别的变量,函数名.而局部作用域,则是定义函数内部. 关于作用域,我们要理解两点: a.在全局不能访问到局部定义的变量 b.在局部能够访问到全局定义的变量,但是不能修改全局定义的变量(当然有方法可以修改) 下面我们来看看下面实例: x = 1 def funx(): x = 10 print(x) # 打印出10 funx() print(x) # 打印出1 如果局部没有定义变量x,那么函数内部会从内往

  • 使用Python装饰器在Django框架下去除冗余代码的教程

    Python装饰器是一个消除冗余的强大工具.随着将功能模块化为大小合适的方法,即使是最复杂的工作流,装饰器也能使它变成简洁的功能. 例如让我们看看Django web框架,该框架处理请求的方法接收一个方法对象,返回一个响应对象: def handle_request(request): return HttpResponse("Hello, World") 我最近遇到一个案例,需要编写几个满足下述条件的api方法: 返回json响应 如果是GET请求,那么返回错误码 做为一个注册api

  • python装饰器与递归算法详解

    1.python装饰器 刚刚接触python的装饰器,简直懵逼了,直接不懂什么意思啊有木有,自己都忘了走了多少遍Debug,查了多少遍资料,猜有点点开始明白了.总结了一下解释得比较好的,通俗易懂的来说明一下: 小P闲来无事,随便翻看自己以前写的一些函数,忽然对一个最最最基础的函数起了兴趣: def sum1(): sum = 1 + 2 print(sum) sum1() 此时小P想看看这个函数执行用了多长时间,所以写了几句代码插进去了: import time def sum1(): star

  • Python装饰器实现几类验证功能做法实例

    最近新需求来了,要给系统增加几个资源权限.尽量减少代码的改动和程序的复杂程度.所以还是使用装饰器比较科学 之前用了一些登录验证的现成装饰器模块.然后仿写一些用户管理部分的权限装饰器. 比如下面这种 def permission_required(permission): def decorator(f): @wraps(f) def decorated_function(*args, **kwargs): if not current_user.can(permission): abort(40

  • Python 装饰器实现DRY(不重复代码)原则

    Python装饰器是一个消除冗余的强大工具.随着将功能模块化为大小合适的方法,即使是最复杂的工作流,装饰器也能使它变成简洁的功能. 例如让我们看看Django web框架,该框架处理请求的方法接收一个方法对象,返回一个响应对象: def handle_request(request): return HttpResponse("Hello, World") 我最近遇到一个案例,需要编写几个满足下述条件的api方法: 返回json响应 如果是GET请求,那么返回错误码 做为一个注册api

  • Python装饰器(decorator)定义与用法详解

    本文实例讲述了Python装饰器(decorator)定义与用法.分享给大家供大家参考,具体如下: 什么是装饰器(decorator) 简单来说,可以把装饰器理解为一个包装函数的函数,它一般将传入的函数或者是类做一定的处理,返回修改之后的对象.所以,我们能够在不修改原函数的基础上,在执行原函数前后执行别的代码.比较常用的场景有日志插入,事务处理等. 装饰器 最简单的函数,返回两个数的和 def calc_add(a, b): return a + b calc_add(1, 2) 但是现在又有新

随机推荐