详解Python list和numpy array的存储和读取方法
numpy array存储为.npy
存储:
import numpy as np numpy_array = np.array([1,2,3]) np.save('log.npy',numpy_array )
读取:
import numpy as np numpy_array = np.load('log.npy')
运行结果:
list存储为.txt
存储:
list_log = [] list_log.append([1,2,3]) list_log.append([4,5,6,7]) file= open('log.txt', 'w') for fp in list_log: file.write(str(fp)) file.write('\n') file.close()
这样存储的结果list_log的每一行在txt也是分行的
运行结果:
读取:
file=open('log.txt', 'r') list_read = file.readlines()
读出来list_read的结果仍然是一行一行的
运行结果:
.txt文件读取为int
label_path = 'C:/Users/leex/Desktop/label.txt' file = open((label_path),'r') label = [int(x.strip()) for x in file] file.close()
运行结果:
如果不加int(),则读取的为字符串格式
还有一种常见的情况是label是以one-hot编码存储的
可以用np.loadtxt读取
import numpy as np label_path = 'C:/Users/leex/Desktop/label.txt' label = np.loadtxt(label_path, dtype=np.int64)
运行结果
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
相关推荐
-
Python中的二维数组实例(list与numpy.array)
关于python中的二维数组,主要有list和numpy.array两种. 好吧,其实还有matrices,但它必须是2维的,而numpy arrays (ndarrays) 可以是多维的. 我们主要讨论list和numpy.array的区别: 我们可以通过以下的代码看出二者的区别 >>import numpy as np >>a=[[1,2,3],[4,5,6],[7,8,9]] >>a [[1,2,3],[4,5,6],[7,8,9]] >>type(a
-
详谈Python中列表list,元祖tuple和numpy中的array区别
1.列表 list是处理一组有序项目的数据结构,即你可以在一个列表中存储一个序列的项目.列表中的项目.列表中的项目应该包括在方括号中,这样python就知道你是在指明一个列表.一旦你创建了一个列表,你就可以添加,删除,或者是搜索列表中的项目.由于你可以增加或删除项目,我们说列表是可变的数据类型,即这种类型是可以被改变的,并且列表是可以嵌套的. 列表是可以改变的,能够增加或减少,(append和del函数) 2.元组 元祖和列表十分相似,不过元组是不可变的.即你不能修改元组.元组通过圆括号中用逗号
-
对numpy的array和python中自带的list之间相互转化详解
a=([3.234,34,3.777,6.33]) a为python的list类型 将a转化为numpy的array: np.array(a) array([ 3.234, 34. , 3.777, 6.33 ]) 将a转化为python的list a.tolist() 以上这篇对numpy的array和python中自带的list之间相互转化详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: Python创建二维数组实例(关于list的一个
-
python实现list由于numpy array的转换
实例如下所示: u = array([[1,2],[3,4]]) m = u.tolist() #转换为list m.remove(m[0]) #移除m[0] m = np.array(m) #转换为arra 以上这篇python实现list由于numpy array的转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: Python中列表list以及list与数组array的相互转换实现方法 python 中的list和array的不同之处及
-
对python中list的拷贝与numpy的array的拷贝详解
1.python中列表list的拷贝,会有什么需要注意的呢? python变量名相当于标签名. list2=list1 ,直接赋值,实质上指向的是同一个内存值.任意一个变量list1(或list2)发生改变,都会影响另一个list2(或list1). eg: >>> list1=[1,2,3,4,5,6] >>> list2=list1 >>> list1[2]=88 >>> list1 [1, 2, 88, 4, 5, 6] >
-
Python list与NumPy array 区分详解
1. 数据类型 type() #!/usr/bin/env python # -*- coding: utf-8 -*- # Yongqiang Cheng from __future__ import absolute_import from __future__ import print_function from __future__ import division import os import sys sys.path.append(os.path.dirname(os.path.a
-
详解Python list和numpy array的存储和读取方法
numpy array存储为.npy 存储: import numpy as np numpy_array = np.array([1,2,3]) np.save('log.npy',numpy_array ) 读取: import numpy as np numpy_array = np.load('log.npy') 运行结果: list存储为.txt 存储: list_log = [] list_log.append([1,2,3]) list_log.append([4,5,6,7])
-
详解Python list 与 NumPy.ndarry 切片之间的对比
详解Python list 与 NumPy.ndarry 切片之间的区别 实例代码: # list 切片返回的是不原数据,对新数据的修改不会影响原数据 In [45]: list1 = [1, 2, 3, 4, 5] In [46]: list2 = list1[:3] In [47]: list2 Out[47]: [1, 2, 3] In [49]: list2[1] = 1999 # 原数据没变 In [50]: list1 Out[50]: [1, 2, 3, 4, 5] In [51]
-
详解python如何通过numpy数组处理图像
如图,以该猫咪图片为例(忽略水印).将该文件命名为cat.jpg,并对其展开以下操作. 使用PIL库进行灰度处理 from PIL import Image import numpy as np # 读取图像,并转化为数组 im = np.array(Image.open("cat.jpg")) # 灰度处理公式 gray_narry = np.array([0.299, 0.587, 0.114]) x = np.dot(im, gray_narry) # 数组转图片 gray_ca
-
详解Python中的Numpy、SciPy、MatPlotLib安装与配置
用Python来编写机器学习方面的代码是相当简单的,因为Python下有很多关于机器学习的库.其中下面三个库numpy,scipy,matplotlib,scikit-learn是常用组合,分别是科学计算包,科学工具集,画图工具包,机器学习工具集. numpy :主要用来做一些科学运算,主要是矩阵的运算.NumPy为Python带来了真正的多维数组功能,并且提供了丰富的函数库处理这些数组.它将常用的数学函数都进行数组化,使得这些数学函数能够直接对数组进行操作,将本来需要在Python级别进行的循
-
实例详解Python中的numpy.abs和abs函数
目录 说在最前 先看示例程序-abs()函数 再看示例程序-numpy.abs()函数 观察两个程序的结果 分析解释 拓展 补充:numpy abs()报错 总结 说在最前 不知道小伙伴们在写代码的时候有没有区分开numpy.abs和abs函数,别小看这两个函数,如果在写程序的时候正确区分使用这两个函数可以使自己的程序运行效率大大提升. 别看这两个函数都能对整数求绝对值,但他们俩的返回值类型完全不一样,如果傻傻地混为一谈,将会使你的程序运行时间被大大拖累! 今天笔者就带小伙伴们看看,这两个函数究
-
详解Python二维数组与三维数组切片的方法
如果对象是二维数组,则切片应当是x[:]的形式,里面有一个冒号,冒号之前和之后分别表示对象的第0个维度和第1个维度: 如果对象是三维数组,则切片应当是x[::],里面有两个冒号,分割出三个间隔,三个间隔的前.中和后分别表示对象的第0.1.2个维度. x[n,:].x[:,n].x[m:n,:].x[:,m:n] 上面的中括号中(m:n)应当看成一个整体,除了(m:n)之外的冒号就是用来表明在哪个维度上操作的. 对于二维数组,在冒号前面的(n,)意味着对二维数组的第0个维度上的第n号元素操作,在冒
-
详解Python并发编程之创建多线程的几种方法
大家好,并发编程 今天开始进入第二篇. 今天的内容会比较基础,主要是为了让新手也能无障碍地阅读,所以还是要再巩固下基础.学完了基础,你们也就能很顺畅地跟着我的思路理解以后的文章. 本文目录 学会使用函数创建多线程 学会使用类创建多线程 多线程:必学函数讲解 经过总结,Python创建多线程主要有如下两种方法: 函数 类 接下来,我们就来揭开多线程的神秘面纱. . 学会使用函数创建多线程 在Python3中,Python提供了一个内置模块 threading.Thread,可以很方便地让我们创建多
-
详解Python的Flask框架中生成SECRET_KEY密钥的方法
引子 如果遇到了 Must provide secret_key to use csrf错误提醒,原因就是没有设置secret_key ,在代码中加上 app.config['SECRET_KEY']='xxx' SECRET_KEY最好不要写在代码中. 最好设置一个config.py文件,从中读取该内容 config.py CSRF_ENABLED = True SECRET_KEY = 'you-will-never-guess' app.py app.config.from_object(
-
详解Python中打乱列表顺序random.shuffle()的使用方法
之前自己一直使用random中 randint生成随机数以及使用for将列表中的数据遍历一次. 现在有个需求需要将列表的次序打乱,或者也可以这样理解: [需求]将一个容器中的数据每次随机逐个遍历一遍. random.shuffle()方法提供了完美的解决方案. 不会生成新的列表,只是将原列表的次序打乱 # shuffle()使用样例 import random x = [i for i in range(10)] print(x) random.shuffle(x) print(x) 源码及注释
-
详解python 破解网站反爬虫的两种简单方法
最近在学爬虫时发现许多网站都有自己的反爬虫机制,这让我们没法直接对想要的数据进行爬取,于是了解这种反爬虫机制就会帮助我们找到解决方法. 常见的反爬虫机制有判别身份和IP限制两种,下面我们将一一来进行介绍. (一) 判别身份 首先我们看一个例子,看看到底什么时反爬虫. 我们还是以 豆瓣电影榜top250(https://movie.douban.com/top250) 为例.` import requests # 豆瓣电影榜top250的网址 url = 'https://movie.douban
随机推荐
- 基于XML的桌面应用
- Swift中的Access Control权限控制介绍
- JS对select控件option选项的增删改查示例代码
- C#中OpenFileDialog和PictrueBox的用法分析
- ThinkPHP3.2.2的插件控制器功能
- jQuery EasyUI API 中文文档 - ValidateBox验证框
- JavaScript中的私有成员
- Win7下手动安装apache2.2、php5.4笔记
- VBS教程:VBScript 基础-VBScript 数据类型
- 如何在UpdatePanel中调用JS客户端脚本
- ajax响应json字符串和json数组的实例(详解)
- 让VS2008对JQuery语法的智能感知更完美一点
- php 文件上传实例代码
- 使用C#发送Http请求实现模拟登陆实例
- Android仿iOS实现侧滑返回功能(类似微信)
- OpenCV图像几何变换之透视变换
- Node.js从字符串生成文件流的实现方法
- pip命令无法使用的解决方法
- nodejs 使用nodejs-websocket模块实现点对点实时通讯
- Android TV 焦点框移动的实现方法