浅谈Python3实现两个矩形的交并比(IoU)

一、前言

因为最近刚好被问到这个问题,但是自己当时特别懵逼,导致没有做出来。所以下来后自己Google了很多IoU的博客,但是很多博客要么过于简略,要么是互相转载的,有一些博客图和代码还有点问题,也导致自己这个萌新走了不少弯路。所以自己重新整理了看的博客,力求以更简单的方式展现这个问题的解答办法,方便日后自己回顾。如果朋友们觉得写的有问题的地方,非常欢迎大家在下面留言交流,避免因为我的问题导致读者走弯路。

二、交并比的概念及应用

假设平面坐标中有一个矩形,并且这个矩形的长和宽均分别与x轴和y轴平行。

那么矩形在平面坐标中的唯一位置可以通过对角线上的两个顶点坐标来确定(这里不做证明)。

如下图所示:这个矩形的唯一位置可以用左上和右下的顶点坐标,即:(xmin, ymax, xmax, ymin)来确定,也可以用左下和右上顶点坐标,即(xmin, ymin, xmax, ymax)来确定。

接下来说一下自己踩的坑:网上的大部分博客,图是标的是左上和右下的顶点坐标,但是代码清一色是通过左下和右上顶点坐标来确定矩形位置的。所以一开始看着特别晕圈。

理论上两种确定方式都可以,不过相对而言,通过左下和右上两个顶点坐标,即(xmin, ymin, xmax, ymax)来确定矩形位置更符合我们的习惯,我想这也是网上大部分代码都是这样的原因吧。

矩形的面积很好求,长X宽就行:

矩形的面积 = (xmax -xmin) X (ymax - ymin)

好了,理清楚怎么确定矩形的位置后,接下来我们就来解决交并比的计算问题。

交并比(Intersection over Union, IoU)是目标检测任务中的一个非常重要的概念。它是产生的预测框(Predicted bounding box)与原标记框(Ground-truth bounding box)的交叠率,即它们的交集(相交面积)与并集(总面积)的比值。最理想情况是完全重叠,即比值为1。一般来说,这个score > 0.5 就可以被认为是一个不错的结果。这个标准用于测量真实和预测之间的相关度,相关度越高,该值越高,它可以评估算法的准确度。

假设平面坐标中有两个矩形:原标记框(Ground-truth bounding box, G)和预测框(Predicted bounding box, P),其中G为手动标记的框,P为算法预测的框,并且这两个矩形的长和宽均分别与x轴和y轴平行。如下图所示:

IoU计算公式:

所以有:矩形G(gxmin, gymin, gxmax, gymax)和矩形P(pxmin, pymin, pxmax, pymax)

求交并比的关键是求出相交矩形G∩P的面积。

解决这个问题,我们只要确定相交矩形的左下(xmin, ymin)和右上(xmax, ymax)顶点坐标即可,即确定(xmin, ymin, xmax, ymax)。

通过看图,我们可以清楚的观察到:

# 相交矩形的左下顶点坐标, 就是两个矩形左下坐标的x和y分别取最大值
xmin = max(gxmin, pxmin)
ymin = max(gymin, pymin)
# 相交矩形的右上顶点坐标, 就是两个矩形右上坐标的x和y分别取最小值
xmax = min(gxmax, pxmax)
ymax = min(gymax, pyxmax)

如果一下没有看明白,可以自己在纸上多画画,理解下。

得到了相交矩形的坐标(xmin, ymin, xmax, ymax)那么相交矩形的面积就非常简单了。

area(G∩P) = 长 X 宽

w = xmax - xmin # 计算相交矩形的长

h = ymax - ymin # 计算相交矩形的宽

area(G∩P) = w X h # 计算相交矩形的面积

这里还有最后一个问题,当计算得到的宽或者长为0或者负数时,说明两个矩形不相交,相交面积为0,那么最后的IoU就为0。这里我们有两种处理方式:

1. 用if语句来分类讨论:

if w <=0 or h <= 0:
 return 0

2. 用max()方法来处理:

w = max(0, (x2 - x1))
h = max(0, (y1 - y2))

三、Python3 实现代码

经过以上分析,思路应该已经非常清晰了,这里我就直接放出完整Python3代码。

def calculate_IoU(predicted_bound, ground_truth_bound):
 """
 computing the IoU of two boxes.
 Args:
  box: (xmin, ymin, xmax, ymax),通过左下和右上两个顶点坐标来确定矩形位置
 Return:
  IoU: IoU of box1 and box2.
 """
 pxmin, pymin, pxmax, pymax = predicted_bound
 print("预测框P的坐标是:({}, {}, {}, {})".format(pxmin, pymin, pxmax, pymax))
 gxmin, gymin, gxmax, gymax = ground_truth_bound
 print("原标记框G的坐标是:({}, {}, {}, {})".format(gxmin, gymin, gxmax, gymax))

 parea = (pxmax - pxmin) * (pymax - pymin) # 计算P的面积
 garea = (gxmax - gxmin) * (gymax - gymin) # 计算G的面积
 print("预测框P的面积是:{};原标记框G的面积是:{}".format(parea, garea))

 # 求相交矩形的左下和右上顶点坐标(xmin, ymin, xmax, ymax)
 xmin = max(pxmin, gxmin) # 得到左下顶点的横坐标
 ymin = max(pymin, gymin) # 得到左下顶点的纵坐标
 xmax = min(pxmax, gxmax) # 得到右上顶点的横坐标
 ymax = min(pymax, gymax) # 得到右上顶点的纵坐标

 # 计算相交矩形的面积
 w = xmax - xmin
 h = ymax - ymin
 if w <=0 or h <= 0:
  return 0

 area = w * h # G∩P的面积
 # area = max(0, xmax - xmin) * max(0, ymax - ymin) # 可以用一行代码算出来相交矩形的面积
 print("G∩P的面积是:{}".format(area))

 # 并集的面积 = 两个矩形面积 - 交集面积
 IoU = area / (parea + garea - area)

 return IoU

if __name__ == '__main__':
 IoU = calculate_IoU( (1, -1, 3, 1), (0, 0, 2, 2))
 print("IoU是:{}".format(IoU))

这里也放一下通过左上和右下顶点坐标来确定矩形的位置的Python3代码。原理是一样的,不要弄混就好。

def calculate_IoU(predicted_bound, ground_truth_bound):
 """
 computing the IoU of two boxes.
 Args:
  box: (x1, y1, x2, y2),通过左上和右下两个顶点坐标来确定矩形
 Return:
  IoU: IoU of box1 and box2.
 """
 px1, py1, px2, py2 = predicted_bound
 print("预测框P的坐标是:({}, {}, {}, {})".format(px1, py1, px2, py2))

 gx1, gy1, gx2, gy2 = ground_truth_bound
 print("原标记框G的坐标是:({}, {}, {}, {})".format(gx1, gy1, gx2, gy2))

 parea = (px2 - px1) * (py1 - py2) # 计算P的面积
 garea = (gx2 - gx1) * (gy1 - gy2) # 计算G的面积
 print("预测框P的面积是:{};原标记框G的面积是:{}".format(parea, garea))

 # 求相交矩形的左上和右下顶点坐标(x1, y1, x2, y2)
 x1 = max(px1, gx1) # 得到左上顶点的横坐标
 y1 = min(py1, gy1) # 得到左上顶点的纵坐标
 x2 = min(px2, gx2) # 得到右下顶点的横坐标
 y2 = max(py2, gy2) # 得到右下顶点的纵坐标

 # 利用max()方法处理两个矩形没有交集的情况,当没有交集时,w或者h取0,比较巧妙的处理方法
 # w = max(0, (x2 - x1)) # 相交矩形的长,这里用w来表示
 # h = max(0, (y1 - y2)) # 相交矩形的宽,这里用h来表示
 # print("相交矩形的长是:{},宽是:{}".format(w, h))
 # 这里也可以考虑引入if判断
 w = x2 - x1
 h = y1 - y2
 if w <=0 or h <= 0:
  return 0

 area = w * h # G∩P的面积
 print("G∩P的面积是:{}".format(area))

 # 并集的面积 = 两个矩形面积 - 交集面积
 IoU = area / (parea + garea - area)

 return IoU

if __name__ == '__main__':
 IoU = calculate_IoU( (1, 1, 3, -1), (0, 2, 2, 0))
 print("IoU是:{}".format(IoU))

以上这篇浅谈Python3实现两个矩形的交并比(IoU)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python实现的Iou与Giou代码

    最近看了网上很多博主写的iou实现方法,但Giou的代码似乎比较少,于是便自己写了一个,新手上路,如有错误请指正,话不多说,上代码: def Iou(rec1,rec2): x1,x2,y1,y2 = rec1 #分别是第一个矩形左右上下的坐标 x3,x4,y3,y4 = rec2 #分别是第二个矩形左右上下的坐标 area_1 = (x2-x1)*(y1-y2) area_2 = (x4-x3)*(y3-y4) sum_area = area_1 + area_2 w1 = x2 - x1#第

  • Python计算机视觉里的IOU计算实例

    其中x1,y1;x2,y2分别表示两个矩形框的中心点 def calcIOU(x1, y1, w1, h1, x2, y2, w2, h2): if((abs(x1 - x2) < ((w1 + w2)/ 2.0)) and (abs(y1-y2) < ((h1 + h2)/2.0))): left = max((x1 - (w1 / 2.0)), (x2 - (w2 / 2.0))) upper = max((y1 - (h1 / 2.0)), (y2 - (h2 / 2.0))) righ

  • python不使用for计算两组、多个矩形两两间的iou方式

    解决问题: 不使用for计算两组.多个矩形两两间的iou 使用numpy广播的方法,在python程序中并不建议使用for语句,python中的for语句耗时较多,如果使用numpy广播的思想将会提速不少. 代码: def calc_iou(bbox1, bbox2): if not isinstance(bbox1, np.ndarray): bbox1 = np.array(bbox1) if not isinstance(bbox2, np.ndarray): bbox2 = np.arr

  • python计算二维矩形IOU实例

    计算交并比:交的面积除以并的面积. 要求矩形框的长和宽应该平行于图片框.不然不能用这样的公式计算. 原理,从一维上来理解:两条红线的距离之和减去黑色线之间的距离就是相交的距离.两条红线之和很容易算,两条黑线之间的距离就是最小的起点到到最大的末点,最小的起点好算,最大的末点就是两点加上各自长度之后的最大值.这就算出了一维的情况,二维的情况一样,计算二次而已. def iou(rect1,rect2): ''' 计算两个矩形的交并比 :param rect1:第一个矩形框.表示为x,y,w,h,其中

  • 浅谈Python3实现两个矩形的交并比(IoU)

    一.前言 因为最近刚好被问到这个问题,但是自己当时特别懵逼,导致没有做出来.所以下来后自己Google了很多IoU的博客,但是很多博客要么过于简略,要么是互相转载的,有一些博客图和代码还有点问题,也导致自己这个萌新走了不少弯路.所以自己重新整理了看的博客,力求以更简单的方式展现这个问题的解答办法,方便日后自己回顾.如果朋友们觉得写的有问题的地方,非常欢迎大家在下面留言交流,避免因为我的问题导致读者走弯路. 二.交并比的概念及应用 假设平面坐标中有一个矩形,并且这个矩形的长和宽均分别与x轴和y轴平

  • 浅谈Python3多线程之间的执行顺序问题

    一个多线程的题:定义三个线程ID分别为ABC,每个线程打印10遍自己的线程ID,按ABCABC--的顺序进行打印输出. 我的解法: from threading import Thread, Lock # 由_acquire解锁执行后释放_release锁 def _print(_id: str, _acquire: Lock, _release: Lock) -> None: for i in range(10): _acquire.acquire() print(f"id:{_id}&

  • 浅谈python3打包与拆包在函数的应用详解

    1.序列(拆包) *用作序列拆包:*可对字符串.列表.集合.元组.字典.数字元素等序列进行拆包 print(*(1,2,3,4,5,6)) #1 2 3 4 5 6 print(*[1,2,3,4,5,6]) #1 2 3 4 5 6 序列拆包赋值: 注意:*变量 不能在第一个位置,否则会报错 a, b, *c = 0, 1, 2, 3 #获取剩余部分 a, *b, c = 0, 1, 2, 3 #获取中间部分 a, b, *c = 0, 1 a, *b, c = 0, 1 优先对位置变量赋值,

  • 浅谈Python3中print函数的换行

    Python3中print函数的换行 最近看了看Python的应用,从入门级的九九乘法表开始,结果发现Python3.x和Python2.x真的是有太大的不同之处,就比如这里的换行处理,怕忘记先记下来,好了,咱移步下文-- Python2.X中的代码: #!/usr/bin/env python #-*- coding: utf-8 -*- __author__ = '****' class PrintTable(object): '''打印九九乘法表''' def __init__(self)

  • 浅谈Python3中datetime不同时区转换介绍与踩坑

    最近的项目需要根据用户所属时区制定一些特定策略,学习.应用了若干python3的时区转换相关知识,这里整理一部分记录下来. 下面涉及的几个概念及知识点: GMT时间:Greenwich Mean Time, 格林尼治平均时间 UTC时间:Universal Time Coordinated 世界协调时,可以认为是更精准的GMT时间,但两者误差极小,在1s以内,一般可视为等同 LMT:Local Mean Time, 当地标准时间 Python中的北京时间:Python的标准timezone中信息

  • 浅谈Python3.10 和 Python3.9 之间的差异

    目录 介绍: 了解 Python 及其用例: 分析 Python 3.9 V/s Python 3.10 的差异 Python 3.9: IANA 时区数据库 合并和更新字典的函数 删除前缀和后缀 在 Python 3.9 中对内置泛型类型使用类型提示 Python 3.10: 改进的语法错误消息 更好的类型提示 介绍: 在过去的几十年里,Python 在编程或脚本语言领域为自己创造了一个名字.python 受到高度青睐的主要原因是其极端的用户友好性.Python 还用于处理复杂的程序或编码挑战

  • 浅谈Spring的两种事务定义方式

    一.声明式 这种方法不需要对原有的业务做任何修改,通过在XML文件中定义需要拦截方法的匹配即可完成配置,要求是,业务处理中的方法的命名要有规律,比如setXxx,xxxUpdate等等.详细配置如下: <bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"> <property name="

  • 浅谈Spring的两种配置容器

    Spring提供了两种容器类型 SpringIOC容器是一个IOC Service Provider.提供了两种容器类型:BeanFactory和ApplicationContext.Spring的IOC容器是一个提供IOC支持的轻量级容器.除了基本的ioc支持,它作为轻量级容器还提供了IOC之外的支持. BeanFactory BeanFactory是基础类型IOC容器.顾名思义,就是生产Bean的工厂.能够提供完整的IOC服务.没有特殊指定的话,其默认采用延迟初始化策略.只有当客户端对象需要

  • 浅谈Java的两种多线程实现方式

    本文介绍了浅谈Java的两种多线程实现方式,分享给大家.具有如下: 一.创建多线程的两种方式 Java中,有两种方式可以创建多线程: 1 通过继承Thread类,重写Thread的run()方法,将线程运行的逻辑放在其中 2 通过实现Runnable接口,实例化Thread类 在实际应用中,我们经常用到多线程,如车站的售票系统,车站的各个售票口相当于各个线程.当我们做这个系统的时候可能会想到两种方式来实现,继承Thread类或实现Runnable接口,现在看一下这两种方式实现的两种结果. 程序1

  • 浅谈Python3 numpy.ptp()最大值与最小值的差

    numpy.ptp() 是计算最大值与最小值差的函数,用法如下: import numpy as np a = np.array([np.random.randint(0, 20, 5), np.random.randint(0, 20, 5)]) print('原始数据\n'a) print('对所有数据计算\n', a.ptp()) print('axis=0,按行方向计算,即每列\n', a.ptp(axis=0)) # 按行方向计算,即每列 print('axis=1,按列方向计算,即每

随机推荐