基于matlab MFCC+GMM的安全事件声学检测系统

一、安全事件声学检测简介(附lunwen)

1 选题背景

公共安全问题是社会安全稳定所聚焦的话题之一。近年来,检测技术与监控自动化正深刻地改变着人们的生活。尤其在安防领域,闭路电视CCTV(Closed Circuit Television)、视频流分析、智能监控等新技术得到了广泛应用,大大提高了安防监控的管理效率。然而值得注意的是,基于视频流的监控手段不可避免地也具有一定的先天性缺漏,例如存在视野盲区、易受光照影响等问题,对于事件检测,还可能存在语义不明的问题,监控手段不够全面。纯视频手段在枪击、爆炸、暴恐袭击、人群恐慌等具有较强语义性的突发公共安全事件中,往往不如声学检测分析手段敏感和有效。声学事件检测主要是使用一些声学处理方法,刻画现场音频流的声学特征,再结合适当的分类器进行检测分类,从而实现对音频流中出现的声学事件进行检测分析。基于声学的公共安全事件检测在反恐、维稳、社会治安等多个领域具有广泛的使用价值和应用前景。本课题重点针对枪击与爆炸两类突发公共安全事件,对相应的声学检测方法进行了研究。

2 研究现状

对于枪声的研究聚焦在对于膛口波和弹道波的研究分析上。吴松林等深基于弹丸的空气动力学模型,深入分析了弹道激波的成因和理论波形;蒋灏等分析了小口径武器发射的膛口波和弹道激波,并设计了基于膛口激波的DOA模型对弹丸弹道轨迹进行估计;卢慧洋分析了弹道波和膛口波在枪声检测与定位中的作用,并设计了一套基于正三角形麦克风阵列的枪声定位与测距软硬件系统。
对于声信号处理和声学特征的研究,赵力等给出了常用的信号加窗成帧、端点检测以及常用声学特征的计算方法;韩纪庆等对声学事件检测技术与常用模型做了综述性介绍。徐大为等对比了基于不同声信号特征的端点检测方法,并分析了他们对噪声的抵制能力和运算实时性。
针对枪声的信号处理与声学事件检测研究中,蒋小为和张文等[7]通过低通滤波和谱减法针对膛口波进行去噪处理,在实验中得到了与理论波形高度相近的膛口波信号波形,如图1.22所示,并提出可以使用相关分析进行枪声检测。张克刚等人研究了基于短时能量分析对枪声信号进行端点检测的方法,并提出使用持续时间处理来剔除瞬时大能量噪声。张涛、张文、朱强强等人的研究中指出,可以采用MFCC作为目标片段的特征,用于进一步给分类器进行分类检测。
对于声学事件检测的分类器,Clavel等讨论了监控环境中的枪声检测,并通过PCA选择13维特征作为GMM模型的输入特征;刘力维等提出使用10阶中值滤波处理端点检测中的能量序列,并用GMM对目标片段的按MFCC特征进行分类;朱强强分析了Logo、FFS、Adaboost三种特征选择算法,用特征选择算法对时域特征、频域特征、感知域特征、基于自相关函数的特征等共计9个特征组成的特征全集进行特征选择,并最后输入到GMM中进行分类;Pimentel等人提出了通过分析聚类过程中的WSS指标来确定聚类算法中聚类中心数目的方法。
关于声学事件数据库,Fonseca等人所在的庞培法布拉大学(Universitat Pompeu Fabra, Barcelona)音乐技术研究小组为了解决目前数据驱动型(data-driven)声学计算研究所遇到的瓶颈和困难,发起了Freesound Datasets项目,并建立了一个基于众包(crowdsourcing)、规模宏大、音频种类较齐全的大型公开数据库Freesound;坦佩雷理工大学(Tampere University of Technology,TUT)信号处理学系Mesaro等人发起了事件检测挑战TUT Sound Events Challenge与声学场景检测挑战Acoustic Scene Classification Challenge,加速了基于声学的事件检测和场景分析的相关研究。

3 算法流程设计

二、部分源代码

for ii = 1:24 % 7 8 wav分别为背景声和背景+枪声,21-24是爆炸声
    if 8 < ii &&  ii < 21
        continue;
    end
    % 取信号
    file_name = strcat('gun',num2str(ii));
    file_name = strcat(file_name,'.wav');
    fprintf('reading %s...\n',file_name);
    [y,fs] = audioread(file_name);
    sz = size(y);
    gun = (y(:,1))'; % 单声道
    % 原信号
    figure(ii);
    p2 = abs(fft(gun)/length(gun));
    % size(gun)
    % size(1:length(gun)/2+1)
    gun_fft = p2(1:length(gun)/2+1);
    gun_fft(2:end-1) = 2*gun_fft(2:end-1);
    f = fs*(0:(length(gun)/2))/length(gun);
    subplot(3,2,1);plot(gun);xlabel('t / s');title('signal');
    subplot(3,2,2);plot(f,gun_fft);title('spectrum');xlabel('frequency / Hz');
    % 短时能量分析
    N = 300; % 窗宽(张克刚)
    inc = 100; % 帧移(张克刚)
    win = hamming(N);
    % frameout: num x N
    % t: num x 1, centers of frames
    % energy: 1 x num
    [frameout,t,energy]=enframe(y,win,inc);
    t = t';
    % 自适应短时能量阈值分割
    %size(energy)
    threshold = min(energy)+0.2*(max(energy)-min(energy));
    processed_energy = energy;
    for i = 1:length(energy)
        processed_energy(i) = 0;
        if energy(i) >= threshold
            processed_energy(i) = 1;
        end
        %fprintf('%d: %f > %f = %d\n',ii,energy(i),threshold,processed_energy(i));
    end
    subplot(3,2,3); plot(energy,'b');title('energy');
    hold on;plot(threshold*ones(size(energy)),'g');
    subplot(3,2,5); plot(processed_energy);title('binarized energy')
    % 持续时间分析
    thr = 30; % 持续采样点
    cnt = 0;
    for i = 1:length(processed_energy)
        if processed_energy(i) == 1
            if cnt > 0
                cnt = cnt+1; %计数器累加
            elseif cnt == 0
                cnt = 1; %初始化计数器
            end
            if i == length(processed_energy) && cnt < thr
                processed_energy((i-cnt):i) = 0;
            end
        elseif processed_energy(i) == 0
            if cnt > 0
                if cnt < thr
                    processed_energy((i-cnt):i) = 0;
                end
            end
            cnt = 0;
        end
        %fprintf('%f, %f\n',i,processed_energy(i));
    end

    subplot(3,2,3);hold on;plot(processed_energy*max(energy),'r');hold off;
    subplot(3,2,5);hold on;plot(processed_energy,'r');hold off;
end
function [f,t,eng,zcr]=enframe(x,win,inc)
%ENFRAME split signal up into (overlapping) frames: one per row. [F,T]=(X,WIN,INC)
%
%	F = ENFRAME(X,LEN) splits the vector X(:) up into
%	frames. Each frame is of length LEN and occupies
%	one row of the output matrix. The last few frames of X
%	will be ignored if its length is not divisible by LEN.
%	It is an error if X is shorter than LEN.
%
%	F = ENFRAME(X,LEN,INC) has frames beginning at increments of INC
%	The centre of frame I is X((I-1)*INC+(LEN+1)/2) for I=1,2,...
%	The number of frames is fix((length(X)-LEN+INC)/INC)
%
%	F = ENFRAME(X,WINDOW) or ENFRAME(X,WINDOW,INC) multiplies
%	each frame by WINDOW(:)
%
%   The second output argument, T, gives the time in samples at the centre
%   of each frame. T=i corresponds to the time of sample X(i).
%
nx=length(x);
nwin=length(win);
if (nwin == 1)
   len = win;
else
   len = nwin;
end
if (nargin < 3)
   inc = len;
end
len = nwin;
nf = fix((nx-len+inc)/inc);
f=zeros(nf,len);
indf= inc*(0:(nf-1)).';
inds = (1:len);
f(:) = x(indf(:,ones(1,len))+inds(ones(nf,1),:));
if (nwin > 1)
    w = win(:)';
    f = f .* w(ones(nf,1),:);
end
t = floor((1+len)/2)+indf;
%fprintf('size of f\n');
szf = size(f);
% ff = f(:).*f(:);
for i = 1:szf(1)
    %ff = f(i,:).*f(i,:)
%     ff = abs(f(i,:));
%     eng(i) = sum(ff);
    eng(i) = 0;
    zcr(i) = 0;
    for j = 1:szf(2)
        eng(i) = eng(i)+abs(f(i,j));
        if j+1 <= szf(2)
            zcr(i) = zcr(i)+abs(sign(f(i,j+1))-sign(f(i,j)));
        end
    end
    zcr(i) = 0.5*zcr(i);
end

三、运行结果

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.

以上就是基于matlab MFCC+GMM的安全事件声学检测系统的详细内容,更多关于matlab MFCC+GMM安全事件声学检测的资料请关注我们其它相关文章!

(0)

相关推荐

  • 基于MATLAB和Python实现MFCC特征参数提取

    1.MFCC概述 在语音识别(Speech Recognition)和话者识别(Speaker Recognition)方面,最常用到的语音特征就是梅尔倒谱系数(Mel-scale FrequencyCepstral Coefficients,简称MFCC).根据人耳听觉机理的研究发现,人耳对不同频率的声波有不同的听觉敏感度.从200Hz到5000Hz的语音信号对语音的清晰度影响较大.两个响度不等的声音作用于人耳时,则响度较高的频率成分的存在会影响到对响度较低的频率成分的感受,使其变得不易察觉,

  • Matlab 数字图像的滤波及边缘检测

    目录 一.图像滤波 1.1 线性滤波器 1.1.1 均值滤波 1.1.2 高斯滤波 1.2 非线性滤波器 1.2.1 中值滤波器 1.2.2 双边滤波器 1.3 滤波器的 Matlab 代码实现 二.图像边缘检测 2.1 一阶边缘检测算子 2.1.1 Sobel 算子 2.1.2 Canny 算子 2.2 二阶边缘检测算子 2.2.1 拉普拉斯算子 2.3 边缘检测的 Matlab 代码实现 2.4 边缘检测算法总结 三.参考资料 一.图像滤波 图像滤波的主要目的就是在尽量保留图像细节特征的条件

  • Matlab实现图像边缘检测

    为了在一幅图像 f 的(x,y)位置寻找边缘的强度和方向,所选择的工具就是梯度,梯度使用向量来表示: 该向量指出了图像 f 在位置(x,y)处的最大变化率的方向,梯度向量的大小表示为: 它是梯度向量方向变化率的值. 梯度向量的方向表示为: 梯度算子 roberts算子: sobel算子: prewitt算子: Matlab实现 function output = my_edge(input_img,method) if size(input_img,3)==3 input_img=rgb2gra

  • Matlab处理图像后实现简单的人脸检测

    1.人脸检测原理框图 整体思路是寻找图片中最大的连通域,将其认定为人脸. 第一个环节均值滤波,是为了减弱图像的相关细节部分,以免毛刺影响后期连通域的形成,二值化方便形态学处理,减少运算量.考虑到人脸有黑人和白人黄种人,黑人肤色较深,在二值化之后面部区域不容易形成较大的连通域,如果采取形态学边界提取的办法,就可以避免这个问题,形态学边界提取,只要结构元素够大,也可以形成较大的封闭连通域. 然后就是纵向闭合操作,这一步我选择采用竖向长条状的结构元素进行闭合运算,因为人的脸部和颈部以及头发和衣物等等都

  • 基于matlab MFCC+GMM的安全事件声学检测系统

    一.安全事件声学检测简介(附lunwen) 1 选题背景 公共安全问题是社会安全稳定所聚焦的话题之一.近年来,检测技术与监控自动化正深刻地改变着人们的生活.尤其在安防领域,闭路电视CCTV(Closed Circuit Television).视频流分析.智能监控等新技术得到了广泛应用,大大提高了安防监控的管理效率.然而值得注意的是,基于视频流的监控手段不可避免地也具有一定的先天性缺漏,例如存在视野盲区.易受光照影响等问题,对于事件检测,还可能存在语义不明的问题,监控手段不够全面.纯视频手段在枪

  • 基于Matlab图像处理的公路裂缝检测实现

    目录 一.简介 1案例背景 2理论基础 3程序实现 二.部分源代码 三.运行结果 一.简介 1 案例背景 随着国家对公路建设的大力投入,我国的公路通车总里程己经位居世界前列,这样进一步促进了我国经济建设的发展.随着公路的大量投运,公路日常养护和管理已经成为制约公路运营水平提高的瓶颈,特别是路面状态采集.检测维护等工作更是对传统的公路运维模式提出了挑战.路面裂缝是公路日常养护管理中最常见的路面损坏,也是影响公路状态评估和进行必要的公路维修的重要因素!.一般而言,如果路面裂缝能够在被恶化成坑槽之前得

  • 详解基于Matlab的空心散点检测

    目录 问题描述 过程展示 图像导入 依据RGB值图像二值化 图像腐蚀 图像边缘清理 联通区域查找与坐标均值计算 圈查找 完整代码 其它形状空心散点检测 问题描述 有一张这样的图片,如何提取里面的红色圈圈坐标,并且连接这些坐标形成两个封闭的环路? 过程展示 图像导入 oriPic=imread('test1.png'); subplot(2,2,1) imshow(oriPic) 依据RGB值图像二值化 原理就是图中颜色种类比较少,只有红黑白,而红色和白色都是R通道数值较大,因此我们可以利用这一点

  • 基于Matlab制作一个不良图片检测系统

    目录 不良图片检测部分 part.0 图片导入 part.1 检查是否为肤色 part.2 皮肤区域标记 part.3 通过皮肤区域特点判定是否为不良图片 完整代码 批量处理部分 不良图片检测部分 看到博主码猴小明用python PIL库制作了一个不良图片识别系统,手痒,想用MATLAB也试试,毕竟矩阵运算也算是MATLAB的强项了,使用MATLAB写可比用python写简洁太多了,总体流程如下: 检查各个像素是否为肤色 将相邻的肤色像素归为一个皮肤区域,得到若干个皮肤区域,并剔除像素数量极少的

  • 基于Matlab实现BP神经网络交通标志识别

    目录 一.BP神经网络交通标志识别简介 二.部分源代码 三.运行结果 一.BP神经网络交通标志识别简介 道路交通标志用以禁止.警告.指示和限制道路使用者有秩序地使用道路, 保障出行安全.若能自动识别道路交通标志, 则将极大减少道路交通事故的发生.但是由于道路交通错综复杂, 且智能识别技术尚未成熟, 为了得到高效实用的道路标志识别系统, 仍需进行大量的研究.限速交通标志的检测识别作为道路交通标志识别系统的一个重要组成部分, 对它的研究具有非常重要的意义. 目前国内已有不少学者针对道路交通标志牌的智

  • 基于Matlab制作伪3D第一视角迷宫小游戏

    目录 游戏效果 游戏原理说明 第一代程序计算交点方法 第二代程序计算交点方法 距离转换为线段长度 完整代码 游戏效果 使用键盘上方向键↑向前移动 使用键盘左右方向键调整← →朝向 游戏原理说明 原理很简单,如效果图所示,主要就是以角色视角方向发射大量的直线模拟视线,并计算直线与墙壁交点,获取每一条视线方向下,角色到墙壁的距离,然后根据近大远小的原理绘制不同长度的竖向直线模拟墙壁. 第一代程序计算交点方法 第一代程序是使用的polyshape对象(二维多边形对象)制作墙壁,polyshape对象重

  • Android基于OpenCV实现QR二维码检测

    目录 QR二维码 QR二维码格式 QR二维码结构 API QRCodeDetector类结构 检测QR二维码 识别QR二维码 检测并识别QR二维码 操作 结果 源码 QR二维码 QR码(英语:Quick Response Code:全称为快速响应矩阵图码)是二维码的一种,于1994年由日本DENSO WAVE公司发明.QR来自英文Quick Response的缩写,即快速反应,因为发明者希望QR码可以快速解码其内容.QR码使用四种标准化编码模式(数字.字母数字.字节(二进制)和日文(Shift_

  • Java实现 基于密度的局部离群点检测------lof算法

    算法概述 算法:基于密度的局部离群点检测(lof算法) 输入:样本集合D,正整数K(用于计算第K距离) 输出:各样本点的局部离群点因子 过程: 计算每个对象与其他对象的欧几里得距离 对欧几里得距离进行排序,计算第k距离以及第K领域 计算每个对象的可达密度 计算每个对象的局部离群点因子 对每个点的局部离群点因子进行排序,输出. 算法Java源码 本算法包括两个类文件,一个是:DataNode,另一个是:OutlierNodeDetect DataNode的源码 package com.bigdat

  • 基于matlab对比度和结构提取的多模态解剖图像融合实现

    目录 一.图像融合简介 二.部分源代码 三.运行结果 四.matlab版本 一.图像融合简介 应用多模态图像的配准与融合技术,可以把不同状态的医学图像有机地结合起来,为临床诊断和治疗提供更丰富的信息.介绍了多模态医学图像配准与融合的概念.方法及意义.最后简单介绍了小波变换分析方法. 二.部分源代码 clear; close all; clc; warning off %% A Novel Multi-Modality Anatomical Image FusionMethod Based on

  • 基于深度学习和OpenCV实现目标检测

    目录 使用深度学习和 OpenCV 进行目标检测 MobileNets:高效(深度)神经网络 使用 OpenCV 进行基于深度学习的对象检测 使用 OpenCV 检测视频 使用深度学习和 OpenCV 进行目标检测 基于深度学习的对象检测时,您可能会遇到三种主要的对象检测方法: Faster R-CNNs (Ren et al., 2015) You Only Look Once (YOLO) (Redmon et al., 2015) Single Shot Detectors (SSD)(L

随机推荐