用Go+Redis实现分布式锁的示例代码

目录
  • 为什么需要分布式锁
  • 分布式锁需要具备特性
  • 实现 Redis 锁应先掌握哪些知识点
    • set 命令
    • Redis.lua 脚本
  • go-zero 分布式锁 RedisLock 源码分析
  • 关于分布式锁还有哪些实现方案
  • 项目地址

为什么需要分布式锁

用户下单
锁住 uid,防止重复下单。

库存扣减
锁住库存,防止超卖。

余额扣减
锁住账户,防止并发操作。
分布式系统中共享同一个资源时往往需要分布式锁来保证变更资源一致性。

分布式锁需要具备特性

排他性
锁的基本特性,并且只能被第一个持有者持有。

防死锁
高并发场景下临界资源一旦发生死锁非常难以排查,通常可以通过设置超时时间到期自动释放锁来规避。

可重入
锁持有者支持可重入,防止锁持有者再次重入时锁被超时释放。

高性能高可用
锁是代码运行的关键前置节点,一旦不可用则业务直接就报故障了。高并发场景下,高性能高可用是基本要求。

实现 Redis 锁应先掌握哪些知识点

set 命令

SET key value [EX seconds] [PX milliseconds] [NX|XX]
  • EX second :设置键的过期时间为 second 秒。 SET key value EX second 效果等同于 SETEX key second value 。
  • PX millisecond :设置键的过期时间为 millisecond 毫秒。 SET key value PX millisecond 效果等同于 PSETEX key millisecond value 。
  • NX :只在键不存在时,才对键进行设置操作。 SET key value NX 效果等同于 SETNX key value 。
  • XX :只在键已经存在时,才对键进行设置操作。

Redis.lua 脚本

使用 redis lua 脚本能将一系列命令操作封装成 pipline 实现整体操作的原子性。

go-zero 分布式锁 RedisLock 源码分析

core/stores/redis/redislock.go

加锁流程

-- KEYS[1]: 锁key
-- ARGV[1]: 锁value,随机字符串
-- ARGV[2]: 过期时间
-- 判断锁key持有的value是否等于传入的value
-- 如果相等说明是再次获取锁并更新获取时间,防止重入时过期
-- 这里说明是“可重入锁”
if redis.call("GET", KEYS[1]) == ARGV[1] then
    -- 设置
    redis.call("SET", KEYS[1], ARGV[1], "PX", ARGV[2])
    return "OK"

else
    -- 锁key.value不等于传入的value则说明是第一次获取锁
    -- SET key value NX PX timeout : 当key不存在时才设置key的值
    -- 设置成功会自动返回“OK”,设置失败返回“NULL Bulk Reply”
    -- 为什么这里要加“NX”呢,因为需要防止把别人的锁给覆盖了
    return redis.call("SET", KEYS[1], ARGV[1], "NX", "PX", ARGV[2])
end

解锁流程

-- 释放锁
-- 不可以释放别人的锁
if redis.call("GET", KEYS[1]) == ARGV[1] then
    -- 执行成功返回“1”
    return redis.call("DEL", KEYS[1])
else
    return 0
end

源码解析

package redis

import (
    "math/rand"
    "strconv"
    "sync/atomic"
    "time"

    red "github.com/go-redis/redis"
    "github.com/tal-tech/go-zero/core/logx"
)

const (
    letters     = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
    lockCommand = `if redis.call("GET", KEYS[1]) == ARGV[1] then
    redis.call("SET", KEYS[1], ARGV[1], "PX", ARGV[2])
    return "OK"
else
    return redis.call("SET", KEYS[1], ARGV[1], "NX", "PX", ARGV[2])
end`
    delCommand = `if redis.call("GET", KEYS[1]) == ARGV[1] then
    return redis.call("DEL", KEYS[1])
else
    return 0
end`
    randomLen = 16
    // 默认超时时间,防止死锁
    tolerance       = 500 // milliseconds
    millisPerSecond = 1000
)

// A RedisLock is a redis lock.
type RedisLock struct {
    // redis客户端
    store *Redis
    // 超时时间
    seconds uint32
    // 锁key
    key string
    // 锁value,防止锁被别人获取到
    id string
}

func init() {
    rand.Seed(time.Now().UnixNano())
}

// NewRedisLock returns a RedisLock.
func NewRedisLock(store *Redis, key string) *RedisLock {
    return &RedisLock{
        store: store,
        key:   key,
        // 获取锁时,锁的值通过随机字符串生成
        // 实际上go-zero提供更加高效的随机字符串生成方式
        // 见core/stringx/random.go:Randn
        id:    randomStr(randomLen),
    }
}

// Acquire acquires the lock.
// 加锁
func (rl *RedisLock) Acquire() (bool, error) {
    // 获取过期时间
    seconds := atomic.LoadUint32(&rl.seconds)
    // 默认锁过期时间为500ms,防止死锁
    resp, err := rl.store.Eval(lockCommand, []string{rl.key}, []string{
        rl.id, strconv.Itoa(int(seconds)*millisPerSecond + tolerance),
    })
    if err == red.Nil {
        return false, nil
    } else if err != nil {
        logx.Errorf("Error on acquiring lock for %s, %s", rl.key, err.Error())
        return false, err
    } else if resp == nil {
        return false, nil
    }

    reply, ok := resp.(string)
    if ok && reply == "OK" {
        return true, nil
    }

    logx.Errorf("Unknown reply when acquiring lock for %s: %v", rl.key, resp)
    return false, nil
}

// Release releases the lock.
// 释放锁
func (rl *RedisLock) Release() (bool, error) {
    resp, err := rl.store.Eval(delCommand, []string{rl.key}, []string{rl.id})
    if err != nil {
        return false, err
    }

    reply, ok := resp.(int64)
    if !ok {
        return false, nil
    }

    return reply == 1, nil
}

// SetExpire sets the expire.
// 需要注意的是需要在Acquire()之前调用
// 不然默认为500ms自动释放
func (rl *RedisLock) SetExpire(seconds int) {
    atomic.StoreUint32(&rl.seconds, uint32(seconds))
}

func randomStr(n int) string {
    b := make([]byte, n)
    for i := range b {
        b[i] = letters[rand.Intn(len(letters))]
    }
    return string(b)
}

关于分布式锁还有哪些实现方案

etcd
redis redlock

项目地址

https://github.com/zeromicro/go-zero

到此这篇关于用Go+Redis实现分布式锁的示例代码的文章就介绍到这了,更多相关Go Redis分布式锁内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Go 语言下基于Redis分布式锁的实现方式

    分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介绍Redis分布式锁实现的博客,然而他们的实现却有着各种各样的问题,为了避免误人子弟,本篇博客将详细介绍如何正确地实现Redis分布式锁. 项目地址: https://github.com/Spongecaptain/redisLock 1. Go 原生的互斥锁 Go 原生的互斥锁即 sync 包下的 M

  • redis分布式锁的go-redis实现方法详解

    在分布式的业务中 , 如果有的共享资源需要安全的被访问和处理 , 那就需要分布式锁 分布式锁的几个原则; 1.「锁的互斥性」:在分布式集群应用中,共享资源的锁在同一时间只能被一个对象获取. 2. 「可重入」:为了避免死锁,这把锁是可以重入的,并且可以设置超时. 3. 「高效的加锁和解锁」:能够高效的加锁和解锁,获取锁和释放锁的性能也好. 4. 「阻塞.公平」:可以根据业务的需要,考虑是使用阻塞.还是非阻塞,公平还是非公平的锁. redis实现分布式锁主要靠setnx命令 1. 当key存在时失败

  • SpringBoot集成redis实现分布式锁的示例代码

    1.准备 使用redis实现分布式锁,需要用的setnx(),所以需要集成Jedis 需要引入jar,jar最好和redis的jar版本对应上,不然会出现版本冲突,使用的时候会报异常redis.clients.jedis.Jedis.set(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;I)Ljava/lang/String; 我使用的redis版本是2.3.0,Jedis使用的是3.3.0 <de

  • 用Go+Redis实现分布式锁的示例代码

    目录 为什么需要分布式锁 分布式锁需要具备特性 实现 Redis 锁应先掌握哪些知识点 set 命令 Redis.lua 脚本 go-zero 分布式锁 RedisLock 源码分析 关于分布式锁还有哪些实现方案 项目地址 为什么需要分布式锁 用户下单 锁住 uid,防止重复下单. 库存扣减 锁住库存,防止超卖. 余额扣减 锁住账户,防止并发操作. 分布式系统中共享同一个资源时往往需要分布式锁来保证变更资源一致性. 分布式锁需要具备特性 排他性 锁的基本特性,并且只能被第一个持有者持有. 防死锁

  • scala+redis实现分布式锁的示例代码

    1.redis的底层是单例模式,意思是同一个脚本同一时刻只能有一个线程来执行,利用redis的这个特性来实现分布式锁. 首先实现工具类 package utils import CacheManager /** * redis分布式锁 */ object RedisTool { //加锁是否成功标志 val LOCK_SUCCESS:String = "OK" //即当key不存在时,我们进行set操作:若key已经存在,则不做任何操作: val SET_IF_NOT_EXIST:St

  • SpringBoot整合Redis正确的实现分布式锁的示例代码

    前言 最近在做分块上传的业务,使用到了Redis来维护上传过程中的分块编号. 每上传完成一个分块就获取一下文件的分块集合,加入新上传的编号,手动接口测试下是没有问题的,前端通过并发上传调用就出现问题了,并发的get再set,就会存在覆盖写现象,导致最后的分块数据不对,不能触发分块合并请求. 遇到并发二话不说先上锁,针对执行代码块加了一个JVM锁之后问题就解决了. 仔细一想还是不太对,项目是分布式部署的,做了负载均衡,一个节点的代码被锁住了,请求轮询到其他节点还是可以进行覆盖写,并没有解决到问题啊

  • java基于mongodb实现分布式锁的示例代码

    目录 原理 实现 使用 原理 通过线程安全findAndModify 实现锁 实现 定义锁存储对象: /** * mongodb 分布式锁 */ @Data @NoArgsConstructor @AllArgsConstructor @Document(collection = "distributed-lock-doc") public class LockDocument { @Id private String id; private long expireAt; privat

  • springboot+zookeeper实现分布式锁的示例代码

    目录 依赖 本地封装 配置 测试代码 JMeter测试 InterProcessMutex内部实现了zookeeper分布式锁的机制,所以接下来我们尝试使用这个工具来为我们的业务加上分布式锁处理的功能 zookeeper分布式锁的特点:1.分布式 2.公平锁 3.可重入 依赖 <dependency> <groupId>org.apache.zookeeper</groupId> <artifactId>zookeeper</artifactId>

  • java基于jedisLock—redis分布式锁实现示例代码

    分布式锁是啥? 单机锁的概念:我们正常跑的单机项目(也就是在tomcat下跑一个项目不配置集群)想要在高并发的时候加锁很容易就可以搞定,java提供了很多的机制例如:synchronized.volatile.ReentrantLock等锁的机制. 为啥需要分布式锁:当我们的项目比较庞大的时候,单机版的项目已经不能满足吞吐量的需求了,需要对项目做负载均衡,有可能还需要对项目进行解耦拆分成不同的服务,那么肯定是做成分布式的项目,分布式的项目因为是不同的程序控制,所以使用java提供的锁并不能完全保

  • python如何使用Redis构建分布式锁

    这篇文章主要介绍了python如何使用Redis构建分布式锁,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在实际应用场景中,我们可能有多个worker,可能在一台机器,也可能分布在不同的机器,但只有一个worker可以同时持有一把锁,这个时候我们就需要用到分布式锁了. 这里推荐python的实现库,Redlock-py(Python 实现). 正常情况下,worker获得锁后,处理自己的任务,完成后自动释放持有的锁,是不是感觉有点熟悉,很容易

  • Redis实现分布式锁的几种方法总结

    Redis实现分布式锁的几种方法总结 分布式锁是控制分布式系统之间同步访问共享资源的一种方式.在分布式系统中,常常需要协调他们的动作.如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候,往往需要互斥来防止彼此干扰来保证一致性,在这种情况下,便需要使用到分布式锁. 我们来假设一个最简单的秒杀场景:数据库里有一张表,column分别是商品ID,和商品ID对应的库存量,秒杀成功就将此商品库存量-1.现在假设有1000个线程来秒杀两件商品,500个线程秒杀第一个商品,

  • 基于Redis实现分布式锁以及任务队列

    一.前言 双十一刚过不久,大家都知道在天猫.京东.苏宁等等电商网站上有很多秒杀活动,例如在某一个时刻抢购一个原价1999现在秒杀价只要999的手机时,会迎来一个用户请求的高峰期,可能会有几十万几百万的并发量,来抢这个手机,在高并发的情形下会对数据库服务器或者是文件服务器应用服务器造成巨大的压力,严重时说不定就宕机了,另一个问题是,秒杀的东西都是有量的,例如一款手机只有10台的量秒杀,那么,在高并发的情况下,成千上万条数据更新数据库(例如10台的量被人抢一台就会在数据集某些记录下 减1),那次这个

随机推荐