C语言 超详细讲解算法的时间复杂度和空间复杂度

目录
  • 1.前言
    • 1.1 什么是数据结构?
    • 1.2 什么是算法?
  • 2.算法效率
    • 2.1 如何衡量一个算法的好坏
    • 2.2 算法的复杂度
    • 2.3 复杂度在校招中的考察
  • 3.时间复杂度
    • 3.1 时间复杂度的概念
    • 3.2 大O的渐进表示法
    • 3.3 常见时间复杂度计算举例
  • 4.空间复杂度
  • 5. 常见复杂度对比

1.前言

1.1 什么是数据结构?

数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。

1.2 什么是算法?

算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。

2.算法效率

2.1 如何衡量一个算法的好坏

如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:

long long Fib(int N)
{
     if(N < 3)
    	return 1;

    return Fib(N-1) + Fib(N-2);
}

斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?

2.2 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计 算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度

2.3 复杂度在校招中的考察

3.时间复杂度

3.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。

一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
    int count = 0;
    for (int i = 0; i < N ; ++ i)
    {
        for (int j = 0; j < N ; ++ j)
        {
        	++count;
        }
    }
    for (int k = 0; k < 2 * N ; ++ k)
    {
   		 ++count;
    }
    int M = 10;
    while (M--)
    {
    	++count;
    }
    printf("%d\n", count);
}

Func1 执行的基本操作次数 :F(N) = N^2+2*N+10

(‘^’在此章节表示为数乘)

  • N = 10 F(N) = 130
  • N = 100 F(N) = 10210
  • N = 1000 F(N) = 1002010

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

3.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。使用大O的渐进表示法以后,Func1的时间复杂度为:O(N^2)

  • N = 10 F(N) = 100
  • N = 100 F(N) = 10000
  • N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x

最好情况:1次找到

最坏情况:N次找到

平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

3.3 常见时间复杂度计算举例

实例1

// 计算Func2的时间复杂度?
void Func2(int N)
{
    int count = 0;
    for (int k = 0; k < 2 * N ; ++ k)
    {
 	   ++count;
    }
    int M = 10;
    while (M--)
    {
   		++count;
    }
    printf("%d\n", count);
}

实例 2

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
    int count = 0;
    for (int k = 0; k < M; ++ k)
    {
 	   ++count;
    }
    for (int k = 0; k < N ; ++ k)
    {
  		++count;
    }
    printf("%d\n", count);
}

实例 3

// 计算Func4的时间复杂度?
void Func4(int N)
{
    int count = 0;
    for (int k = 0; k < 100; ++ k)
    {
    	++count;
    }
    printf("%d\n", count);
}

实例 4

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

实例 5

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i-1] > a[i])
            {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }
        if (exchange == 0)
        break;
    }
}

实例 6

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
    assert(a);
    int begin = 0;
    int end = n-1;
    while (begin <= end)
    {
        int mid = begin + ((end-begin)>>1);//防溢出
        if (a[mid] < x)
        	begin = mid+1;
        else if (a[mid] > x)
        	end = mid-1;
        else
        	return mid;
    }
    return -1;
}

实例 7

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
    if(0 == N)
    return 1;
    return Fac(N-1)*N;
}

实例 8

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
    if(N < 3)
    return 1;
    return Fib(N-1) + Fib(N-2);
}

实例答案及分析:

实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)

实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)

实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)

实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)

实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2)次(N-1 + N-2 + N-3…+2+1),通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)。

实例6基本操作执行最好1次(第一次就找到了),最坏O(logN)次(全找了一遍但没找到的情况),时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。(建议通过折纸查找的方式讲解logN是怎么计算出来的)(假设找了x次才找完,则共有2^x个数据。反过来讲就是N个数据最多要找logN(底数为2)次)

实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。

实例8通过计算分析发现基本操作递归了2^N 次,时间复杂度为O(2N)。(1+2+4+8……+2(n-1) 再减一些次数(忽略不计))(建议画图递归栈帧的二叉树)

总结:我们想要分析算法的时间复杂度,一定要去看思想,,不能只去看程序是几层循环。 递归算法时间复杂度的计算:

1.每次函数调用是O(1),那么就看递归次数

2.每次函数调用不是O(1),就把每次的调用次数相加。

4.空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

实例 1

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)  

    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i-1] > a[i])
            {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }
        if (exchange == 0)
        break;
    }
}

实例 2

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
    if(n==0)
    	return NULL;
    long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n ; ++i)
    {
    	fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
    }
    return fibArray;
}

实例 3

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
    if(N == 0)
    return 1;
    return Fac(N-1)*N;
}

实例4

// 计算斐波那契递归Fib的空间复杂度?
long long Fib(size_t N)
{
    if(N < 3)
    return 1;
    return Fib(N-1) + Fib(N-2);
}

实例答案及分析:

实例1使用了常数个额外空间,所以空间复杂度为 O(1)

实例2动态开辟了N个空间,空间复杂度为 O(N)

实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N) 4.先说答案空间复杂度为O(N) ,这是因为它与栈帧的开辟与销毁有关。栈帧销毁后再开辟还是用的同一块空间,它递归2^N次,开辟N个空间算出数值后销毁空间,然后再开辟,总共用了N块空间

总结: 时间一去不复返,是累积的 空间回收以后可以重复利用

5. 常见复杂度对比

一般算法常见的复杂度如下:

总结:这是数据结构(用c语言实现)的第一节课,内容还算简单,可以抓紧时间复习c教程中的指针和结构体等知识,之后的学习会更灵活的运用这些知识。大家加油!

到此这篇关于C语言 超详细讲解算法的时间复杂度和空间复杂度的文章就介绍到这了,更多相关C语言 时间复杂度内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C语言三分钟精通时间复杂度与空间复杂度

    目录 一.时间复杂度 1)O(n)的含义 2)复杂表达式的简化 3)O(n)不一定优于O(n^2) ​4)递归的时间复杂度 二.空间复杂度 1)O(1)空间复杂度​ 2)​​​​​​​O(n)空间复杂度​ 3)​​​​​​​O(mn)空间 复杂度​ 4)递归算法空间算法复杂度分析​ 一.时间复杂度 1)O(n)的含义 程序消耗的时间用算法的操作单元数来表示 假设数据的规模为n,则用f(n)表示操作单元数的大小,而f(n)常被简化 O表示的是一般的情况,而不是上界或下界.并且它是在数据量级非常大的

  • C语言数据结构时间复杂度及空间复杂度简要分析

    目录 一.时间复杂度和空间复杂度是什么? 1.1算法效率定义 1.2时间复杂度概念 1.3空间复杂度概念 二.如何计算常见算法的时间复杂度和空间复杂度 2.1时间复杂度计算 2.2空间复杂度计算 2.3快速推倒大O渐进表达法 三.一些特殊的情况 总结 一.时间复杂度和空间复杂度是什么? 1.1算法效率定义 算法效率分为两种,一种是时间效率--时间复杂度,另一种是空间效率--空间复杂度 1.2时间复杂度概念 时间复杂度,简言之就是你写一个代码,它解决一个问题上需要走多少步骤,需要花费多长时间.打个

  • C语言 超详细讲解算法的时间复杂度和空间复杂度

    目录 1.前言 1.1 什么是数据结构? 1.2 什么是算法? 2.算法效率 2.1 如何衡量一个算法的好坏 2.2 算法的复杂度 2.3 复杂度在校招中的考察 3.时间复杂度 3.1 时间复杂度的概念 3.2 大O的渐进表示法 3.3 常见时间复杂度计算举例 4.空间复杂度 5. 常见复杂度对比 1.前言 1.1 什么是数据结构? 数据结构(Data Structure)是计算机存储.组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合. 1.2 什么是算法? 算法(Algorit

  • C语言超详细讲解排序算法上篇

    目录 1.直接插入排序 2.希尔排序(缩小增量排序) 3.直接选择排序 4.堆排序 进入正式内容之前,我们先了解下初阶常见的排序分类 :我们今天讲前四个! 1.直接插入排序 基本思想:当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排 序码与array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移! 直接插入排序的特性总结: 1. 元素集

  • C语言超详细讲解字符串相乘

    目录 前言 一. 分析思路 二.使用步骤 1.代码如下 2.memset函数 三.总结 前言 我们已经知道,正常的两位整形数据通过*相乘,C语言中int为4字节,32bit(字节),其机器码第一位为符号位,余下31位表示数字,表示范围:-2^31(-2147483648)~2^31-1(2147483647),但超过了这个范围我们该如何做呢? 提示:将数字以字符串的形式进行操作 一. 分析思路 示例: 我们把每一个数都看成是一个字符串,每一个元素为十进制数字所对应的字 符,由于是后面的元素先进行

  • C语言超详细讲解栈与队列实现实例

    目录 1.思考-1 2.栈基本操作的实现 2.1 初始化栈 2.2 入栈 2.3 出栈 2.4 获取栈顶数据 2.5 获取栈中有效元素个数 2.6 判断栈是否为空 2.7 销毁栈 3.测试 3.1测试 3.2测试结果 4.思考-2 5.队列的基本操作实现 5.1 初始化队列 5.2 队尾入队列 5.3 队头出队列 5.4 队列中有效元素的个数 5.5 判断队列是否为空 5.6 获取队头数据 5.7 获取队尾的数据 5.8 销毁队列 6.测试 6.1测试 6.2 测试结果 1.思考-1 为什么栈用

  • C语言超详细讲解轮转数组

    目录 题目描述 实例 解题思路 1. 先整体逆转 2.逆转子数组[0, k - 1] 3.逆转子数组[k, numsSize - 1] 易错点 代码 题目描述 给你一个数组,将数组中的元素向右轮转 k 个位置,其中 k 是非负数.OJ链接 实例 1.实例1 输入: nums = [1,2,3,4,5,6,7], k = 3输出: [5,6,7,1,2,3,4]解释:向右轮转 1 步: [7,1,2,3,4,5,6]向右轮转 2 步: [6,7,1,2,3,4,5]向右轮转 3 步: [5,6,7

  • C语言超详细讲解数据结构中双向带头循环链表

    目录 一.概念 二.必备工作 2.1.创建双向链表结构 2.2.初始化链表 2.3.动态申请节点 2.4.打印链表 2.5.销毁链表 三.主要功能 3.1.在pos节点前插入数据 尾插 头插 3.2.删除pos处节点数据 尾删 头删 3.3.查找数据 四.总代码 List.h 文件 List.c 文件 Test.c 文件 五.拓展 一.概念 前文我们已经学习了单向链表,并通过oj题目深入了解了带头节点的链表以及带环链表,来画张图总体回顾下: 在我们学习的链表中,其实总共有8种,都是单双向和带不带

  • C语言超详细讲解队列的实现及代码

    目录 前言 队列的概念 队列的结构 队列的应用场景 队列的实现 创建队列结构 队列初始化 队列销毁 入队列 出队列 队列判空 获取队列元素个数 获取队列头部元素 获取队列尾部元素 总代码 Queue.h 文件 Queue.c 文件 Test.c 文件 前言 队列的概念 队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出FIFO(First In First Out) 入队列:进行插入操作的一端称为队尾 出队列:进行删除操作的一端称为队头 队列和前文所学的栈

  • C语言超详细讲解线性表

    目录 1. 顺序表 1.1 管理结点 1.2 顺序表的插入 1.3 顺序表的删除 1.4 顺序表的扩容 2. 链表 2.1 定义 2.2 头部插入 2.3 尾部插入 2.4 任意位置插入 2.5 任意位置删除 2.6 虚头结点 1. 顺序表 顺序表是指用一段连续的地址,依次存放数据元素的线性数据结构.此种存储方式使得顺序表的物理结构与逻辑结构都是连续的. 与数组的区别:函数中的数组被存放在栈段中,而栈段有系统限制的大小(可使用ulimit -s查看系统限制的大小,单位为KB),因此顺序表往往使用

  • C语言 超详细讲解链接器

    目录 1 什么是链接器 2 声明与定义 3 命名冲突 3.1 命名冲突 3.2 static修饰符 4 形参.实参.返回值 5 检查外部类型 6 头文件 1 什么是链接器 典型的链接器把由编译器或汇编器生成的若干个目标模块,整合成一个被称为载入模块或可执行文件的实体–该实体能够被操作系统直接执行. 链接器通常把目标模块看成是由一组外部对象组成的.每个外部对象代表着机器内存中的某个部分,并通过一个外部名称来识别.因此,==程序中的每个函数和每个外部变量,如果没有被声明为static,就都是一个外部

  • C语言 超详细讲解库函数

    目录 1 返回整数的getchar函数 2 更新顺序文件 3 缓冲输出与内存分配 4 库函数 练习 1 返回整数的getchar函数 代码: #include<stdio.h> int main() { char c; while((c = getchar())!=EOF)//getchar函数的返回值为整型 putchar(c); return 0; } 上述代码有三种可能: 某些合法的输入字符在被"截断"后使得c的取值与EOF相同,程序将在复制的中途停止. c根本不可能

随机推荐