python并发编程多进程 模拟抢票实现过程

抢票是并发执行

多个进程可以访问同一个文件

多个进程共享同一文件,我们可以把文件当数据库,用多个进程模拟多个人执行抢票任务

db.txt

{"count": 1}

并发运行,效率高,但竞争写同一文件,数据写入错乱,只有一张票,都卖成功给了10个人

#文件db.txt的内容为:{"count":1}
#注意一定要用双引号,不然json无法识别
from multiprocessing import Process
import time
import json
class Foo(object):
  def search(self, name):
    with open("db.txt", "r") as f_read:
      dic = json.load(f_read)
      time.sleep(1) # 模拟读数据的网络延迟
      print("<%s>用户 查看剩余票数为 [%s]" % (name, dic["count"]))
  def get(self, name):
    with open("db.txt", "r") as f_read:
      dic = json.load(f_read)
      if dic["count"] > 0:
        dic["count"] -= 1
        time.sleep(1) # 模拟写数据的网络延迟
        with open("db.txt", "w") as f_write:
          json.dump(dic, f_write)
          print("<%s> 购票成功" % name)
          print("剩余票数为 [%s]" % dic["count"])
      else:
        print("没票了,抢光了")
  def task(self, name):
    self.search(name)
    self.get(name)
if __name__ == "__main__":
  obj = Foo()
  for i in range(1,11):  # 模拟并发10个客户端抢票
    p = Process(target=obj.task, args=("路人%s" % i,))
    p.start()

总结:程序出现数据写入错乱

大家都查到票为1,都购票成功

<路人1>用户 查看剩余票数为 [1]
<路人2>用户 查看剩余票数为 [1]
<路人3>用户 查看剩余票数为 [1]
<路人4>用户 查看剩余票数为 [1]
<路人5>用户 查看剩余票数为 [1]
<路人6>用户 查看剩余票数为 [1]
<路人7>用户 查看剩余票数为 [1]
<路人8>用户 查看剩余票数为 [1]
<路人9>用户 查看剩余票数为 [1]
<路人10>用户 查看剩余票数为 [1]
<路人1> 购票成功
剩余票数为 [0]
<路人2> 购票成功
剩余票数为 [0]
<路人3> 购票成功
剩余票数为 [0]
<路人4> 购票成功
剩余票数为 [0]
<路人5> 购票成功
剩余票数为 [0]
<路人6> 购票成功
剩余票数为 [0]
<路人7> 购票成功
剩余票数为 [0]
<路人8> 购票成功
剩余票数为 [0]
<路人9> 购票成功
剩余票数为 [0]
<路人10> 购票成功
剩余票数为 [0]

总结程序出现数据写入错乱

加锁处理:购票行为由并发变成了串行,牺牲了运行效率,但保证了数据安全

购票功能不应该并发执行,查票应该是并发执行的

查票准不准确不重要,有可能这张票就被别人买走

一个人写完以后,让另外一个人基于上一个人写的结果,再做购票操作

#把文件db.txt的内容重置为:{"count":1}
from multiprocessing import Process
from multiprocessing import Lock
import time
import json
class Foo(object):
  def search(self, name):
    with open("db.txt", "r") as f_read:
      dic = json.load(f_read)
      time.sleep(1) # 模拟读数据的网络延迟
      print("<%s>用户 查看剩余票数为 [%s]" % (name, dic["count"]))
  def get(self, name):
    with open("db.txt", "r") as f_read:
      dic = json.load(f_read)
      if dic["count"] > 0:
        dic["count"] -= 1
        time.sleep(1) # 模拟写数据的网络延迟
        with open("db.txt", "w") as f_write:
          json.dump(dic, f_write)
          print("<%s> 购票成功" % name)
          print("剩余票数为 [%s]" % dic["count"])
      else:
        print("没票了,抢光了")
  def task(self, name, mutex):
    self.search(name)
    mutex.acquire()
    self.get(name)
    mutex.release()
if __name__ == "__main__":
  mutex = Lock()
  obj = Foo()
  for i in range(1,11): # 模拟并发10个客户端抢票
    p = Process(target=obj.task, args=("路人%s" % i, mutex))
    p.start()

执行结果

<路人2>用户 查看剩余票数为 [1]
<路人3>用户 查看剩余票数为 [1]
<路人1>用户 查看剩余票数为 [1]
<路人4>用户 查看剩余票数为 [1]
<路人5>用户 查看剩余票数为 [1]
<路人7>用户 查看剩余票数为 [1]
<路人6>用户 查看剩余票数为 [1]
<路人8>用户 查看剩余票数为 [1]
<路人9>用户 查看剩余票数为 [1]
<路人10>用户 查看剩余票数为 [1]
<路人2> 购票成功
剩余票数为 [0]
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了

with lock

相当于lock.acquire(),执行完自代码块自动执行lock.release()

from multiprocessing import Process
from multiprocessing import Lock
import time
import json
class Foo(object):
  def search(self, name):
    with open("db.txt", "r") as f_read:
      dic = json.load(f_read)

      time.sleep(1) # 模拟读数据的网络延迟
      print("<%s>用户 查看剩余票数为 [%s]" % (name, dic["count"]))
  def get(self, name):
    with open("db.txt", "r") as f_read:
      dic = json.load(f_read)
      if dic["count"] > 0:
        dic["count"] -= 1
        time.sleep(1) # 模拟写数据的网络延迟
        with open("db.txt", "w") as f_write:
          json.dump(dic, f_write)
          print("<%s> 购票成功" % name)
          print("剩余票数为 [%s]" % dic["count"])
      else:
        print("没票了,抢光了")
  def task(self, name, mutex):
    self.search(name)
    with mutex: # 相当于lock.acquire(),执行完自代码块自动执行lock.release()
      self.get(name)
if __name__ == "__main__":
  mutex = Lock()
  obj = Foo()
  for i in range(1,11): # 模拟并发10个客户端抢票
    p = Process(target=obj.task, args=("路人%s" % i, mutex))
    p.start()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python多线程并发实例及其优化

    单线程执行 python的内置模块提供了两个内置模块:thread和threading,thread是源生模块,threading是扩展模块,在thread的基础上进行了封装及改进.所以只需要使用threading这个模块就能完成并发的测试 实例 创建并启动一个单线程 import threading def myTestFunc(): print("我是一个函数") t = threading.Thread(target=myTestFunc) # 创建一个线程 t.start()

  • python实现接口并发测试脚本

    常用的网站性能测试指标有:并发数.响应时间.吞吐量.性能计数器等. 1.并发数 并发数是指系统同时能处理的请求数量,这个也是反应了系统的负载能力. 2.响应时间 响应时间是一个系统最重要的指标之一,它的数值大小直接反应了系统的快慢.响应时间是指执行一个请求从开始到最后收到响应数据所花费的总体时间. 3.吞吐量 吞吐量是指单位时间内系统能处理的请求数量,体现系统处理请求的能力,这是目前最常用的性能测试指标. QPS(每秒查询数).TPS(每秒事务数)是吞吐量的常用量化指标,另外还有HPS(每秒HT

  • python并发编程 Process对象的其他属性方法join方法详解

    一 Process对象的join方法 在主进程运行过程中如果想并发地执行其他的任务,我们可以开启子进程,此时主进程的任务与子进程的任务分两种情况 情况一: 在主进程的任务与子进程的任务彼此独立的情况下,主进程的任务先执行完毕后,主进程还需要等待子进程执行完毕,然后统一回收资源. 这种是没有join方法 情况二: 如果主进程的任务在执行到某一个阶段时,需要等待子进程执行完毕后才能继续执行, 就需要有一种机制能够让主进程检测子进程是否运行完毕,在子进程执行完毕后才继续执行,否则一直在原地阻塞,这就是

  • Python多进程并发(multiprocessing)用法实例详解

    本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心. Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,可以如下: import multiprocessing import t

  • python并发编程多进程之守护进程原理解析

    守护进程 主进程创建子进程目的是:主进程有一个任务需要并发执行,那开启子进程帮我并发执行任务 主进程创建子进程,然后将该进程设置成守护自己的进程 关于守护进程需要强调两点: 其一:守护进程会在主进程代码执行结束后就终止 其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children 如果我们有两个任务需要并发执行,那么开一个主进程和一个子进程分别去执行就ok了,如果子进程的任务

  • Python控制多进程与多线程并发数总结

    一.前言 本来写了脚本用于暴力破解密码,可是1秒钟尝试一个密码2220000个密码我的天,想用多线程可是只会一个for全开,难道开2220000个线程吗?只好学习控制线程数了,官方文档不好看,觉得结构不够清晰,网上找很多文章也都不很清晰,只有for全开线程,没有控制线程数的具体说明,最终终于根据多篇文章和官方文档算是搞明白基础的多线程怎么实现法了,怕长时间不用又忘记,找着麻烦就贴这了,跟我一样新手也可以参照参照. 先说进程和线程的区别: 地址空间:进程内的一个执行单元;进程至少有一个线程;它们共

  • python并发编程多进程 互斥锁原理解析

    运行多进程 每个子进程的内存空间是互相隔离的 进程之间数据不能共享的 互斥锁 但是进程之间都是运行在一个操作系统上,进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端, 是可以的,而共享带来的是竞争,竞争带来的结果就是错乱 #并发运行,效率高,但竞争同一打印终端,带来了打印错乱 from multiprocessing import Process import time def task(name): print("%s 1" % name) time.

  • python并发编程多进程 模拟抢票实现过程

    抢票是并发执行 多个进程可以访问同一个文件 多个进程共享同一文件,我们可以把文件当数据库,用多个进程模拟多个人执行抢票任务 db.txt {"count": 1} 并发运行,效率高,但竞争写同一文件,数据写入错乱,只有一张票,都卖成功给了10个人 #文件db.txt的内容为:{"count":1} #注意一定要用双引号,不然json无法识别 from multiprocessing import Process import time import json cla

  • Python并发编程多进程,多线程及GIL全局解释器锁

    目录 1. 并发与并行 2. 线程与进程的应用场景 2.1. 并行/并发编程相关的技术栈 3. Python中的GIL是什么,它影响什么 1. 并发与并行 所谓的并行(Parallelism),就是多个彼此独立的任务可以同时一起执行,彼此并不相互干扰,并行强调的是同时且独立的运行,彼此不需要协作. 而所谓并发(Concurrency),则是多个任务彼此交替执行,但是同一时间只能有一个处于运行状态,并发执行强调任务之间的彼此协作. 并发通常被误解为并行,并发实际是隐式的调度独立的代码,以协作的方式

  • Python并发编程实例教程之线程的玩法

    目录 一.线程基础以及守护进程 二.线程锁(互斥锁) 三.线程锁(递归锁) 四.死锁 五.队列 六.相关面试题 七.判断数据是否安全 八.进程池 & 线程池 总结 一.线程基础以及守护进程 线程是CPU调度的最小单位 全局解释器锁 全局解释器锁GIL(global interpreter lock) 全局解释器锁的出现主要是为了完成垃圾回收机制的回收机制,对不同线程的引用计数的变化记录的更加精准. 全局解释器锁导致了同一个进程中的多个线程只能有一个线程真正被CPU执行. GIL锁每执行700条指

  • 深入了解Python并发编程

    目录 并发方式 线程([Thread]) 进程 (Process) 远程分布式主机 (Distributed Node) 伪线程 (Pseudo-Thread) 实战运用 计算密集型 IO密集型 总结 并发方式 线程([Thread]) 多线程几乎是每一个程序猿在使用每一种语言时都会首先想到用于解决并发的工具(JS程序员请回避),使用多线程可以有效的利用CPU资源(Python例外).然而多线程所带来的程序的复杂度也不可避免,尤其是对竞争资源的同步问题. 然而在python中由于使用了全局解释锁

  • python爬虫实现最新12306抢票

    1.环境 python 3.7谷歌浏览器chromedriver.exe(浏览器驱动程序,要与浏览器版本对应,并将其添加到环境变量或放到当前py文件所在目录下) 2.相关模块 time (用于某些地方对程序的强制等待)datatime (用于获取当前时间)selenium 3.1 自动化测试模块,这里用于操作浏览器) 3.思路 首先进行登录(支持手机扫码),登录完成进入页面之后,我们会看到有“温馨提示”的弹窗,即当前界面,我们需要处理第一次弹窗, 然后进入到菜单栏车票下的单程中(鼠标移动触发事件

  • Python并发编程之未来模块Futures

    目录 区分并发和并行 并发编程之Futures 到底什么是Futures? 为什么多线程每次只有一个线程执行? 总结 不论是哪一种语言,并发编程都是一项非常重要的技巧.比如我们上一章用的爬虫,就被广泛用在工业的各个领域.我们每天在各个网站.App上获取的新闻信息,很大一部分都是通过并发编程版本的爬虫获得的. 正确并合理的使用并发编程,无疑会给我们的程序带来极大性能上的提升.今天我们就一起学习Python中的并发编程——Futures. 区分并发和并行 我们在学习并发编程时,常常会听到两个词:并发

  • Python并发编程协程(Coroutine)之Gevent详解

    Gevent官网文档地址:http://www.gevent.org/contents.html 基本概念 我们通常所说的协程Coroutine其实是corporateroutine的缩写,直接翻译为协同的例程,一般我们都简称为协程. 在linux系统中,线程就是轻量级的进程,而我们通常也把协程称为轻量级的线程即微线程. 进程和协程 下面对比一下进程和协程的相同点和不同点: 相同点: 我们都可以把他们看做是一种执行流,执行流可以挂起,并且后面可以在你挂起的地方恢复执行,这实际上都可以看做是con

  • python并发编程之线程实例解析

    常用用法 t.is_alive() Python中线程会在一个单独的系统级别线程中执行(比如一个POSIX线程或者一个Windows线程) 这些线程将由操作系统来全权管理.线程一旦启动,将独立执行直到目标函数返回.可以通过查询 一个线程对象的状态,看它是否还在执行t.is_alive() t.join() 可以把一个线程加入到当前线程,并等待它终止 Python解释器在所有线程都终止后才继续执行代码剩余的部分 daemon 对于需要长时间运行的线程或者需要一直运行的后台任务,可以用后台线程(也称

随机推荐