数据结构之堆详解

1. 概述

堆(也叫优先队列),是一棵完全二叉树,它的特点是父节点的值大于(小于)两个子节点的值(分别称为大顶堆和小顶堆)。它常用于管理算法执行过程中的信息,应用场景包括堆排序,优先队列等。

2. 堆的基本操作

堆是一棵完全二叉树,高度为O(lg n),其基本操作至多与树的高度成正比。在介绍堆的基本操作之前,先介绍几个基本术语:

A:用于表示堆的数组,下标从1开始,一直到n
PARENT(t):节点t的父节点,即floor(t/2)
RIGHT(t):节点t的左孩子节点,即:2*t
LEFT(t):节点t的右孩子节点,即:2*t+1
HEAP_SIZE(A):堆A当前的元素数目
下面给出其主要的四个操作(以大顶堆为例):
2.1 Heapify(A,n,t)
该操作主要用于维持堆的基本性质。假定以RIGHT(t)和LEFT(t)为根的子树都已经是堆,然后调整以t为根的子树,使之成为堆。

代码如下:

void Heapify(int A[], int n, int t)
 
{
 
  int left = LEFT(t);
 
  int right = RIGHT(t);
 
  int max = t;
 
  if(left <= n)     max = A[left] > A[max] ? left : max;
 
  if(right <= n)     max = A[right] > A[max] ? right : max;
 
  if(max != A[t])
 
  {
 
    swap(A, max, t);
 
    Heapify(A, n, max);
 
  }
 
}

2.2  BuildHeap(A,n)
该操作主要是将数组A转化成一个大顶堆。思想是,先找到堆的最后一个非叶子节点(即为第n/2个节点),然后从该节点开始,从后往前逐个调整每个子树,使之称为堆,最终整个数组便是一个堆。

代码如下:

void BuildHeap(int A[], int n)
 
{
 
  int i;
 
  for(i = n/2; i<=n; i++)
 
  Heapify(A, n, i);
 
}

2.3 GetMaximum(A,n)
该操作主要是获取堆中最大的元素,同时保持堆的基本性质。堆的最大元素即为第一个元素,将其保存下来,同时将最后一个元素放到A[1]位置,之后从上往下调整A,使之成为一个堆。

代码如下:

void GetMaximum(int A[], int n)
 
{
 
  int max = A[1];
 
  A[1] = A[n];
 
  n--;
 
  Heapify(A, n, 1);
 
  return max;
 
}

2.4  Insert(A, n, t)
向堆中添加一个元素t,同时保持堆的性质。算法思想是,将t放到A的最后,然后从该元素开始,自下向上调整,直至A成为一个大顶堆。

代码如下:

void Insert(int A[], int n, int t)
 
{
 
  n++;
 
  A[n] = t;
 
  int p = n;
 
  while(p >1 && A[PARENT(p)] < t)
 
  {
 
    A[p] = A[PARENT(p)];
 
    p = PARENT(p);
 
  }
 
  A[p] = t;
 
  return max;
 
}

3.  堆的应用

3.1  堆排序
堆的最常见应用是堆排序,时间复杂度为O(N lg N)。如果是从小到大排序,用大顶堆;从大到小排序,用小顶堆。

3.2  在O(n lg k)时间内,将k个排序表合并成一个排序表,n为所有有序表中元素个数。

【解析】取前100 万个整数,构造成了一棵数组方式存储的具有小顶堆,然后接着依次取下一个整数,如果它大于最小元素亦即堆顶元素,则将其赋予堆顶元素,然后用Heapify调整整个堆,如此下去,则最后留在堆中的100万个整数即为所求 100万个数字。该方法可大大节约内存。
3.3 一个文件中包含了1亿个随机整数,如何快速的找到最大(小)的100万个数字?(时间复杂度:O(n lg k))

4. 总结

堆是一种非常基础但很实用的数据结构,很多复杂算法或者数据结构的基础就是堆,因而,了解和掌握堆这种数据结构显得尤为重要。

5. 参考资料

(1)经典算法教程《算法导论》

(0)

相关推荐

  • 数据结构之AVL树详解

    1. 概述 AVL树是最早提出的自平衡二叉树,在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.AVL树得名于它的发明者G.M. Adelson-Velsky和E.M. Landis.AVL树种查找.插入和删除在平均和最坏情况下都是O(log n),增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.本文介绍了AVL树的设计思想和基本操作. 2. 基本术语 有四种种情况可能导致二叉查找树不平衡,分别为: (1)LL:插入一个新节点到根节点的左子树(Left)的左子树

  • 数据结构之伸展树详解

    1. 概述 二叉查找树(Binary Search Tree,也叫二叉排序树,即Binary Sort Tree)能够支持多种动态集合操作,它可以用来表示有序集合.建立索引等,因而在实际应用中,二叉排序树是一种非常重要的数据结构. 从算法复杂度角度考虑,我们知道,作用于二叉查找树上的基本操作(如查找,插入等)的时间复杂度与树的高度成正比.对一个含n个节点的完全二叉树,这些操作的最坏情况运行时间为O(log n).但如果因为频繁的删除和插入操作,导致树退化成一个n个节点的线性链(此时即为一个单链表

  • 数据结构之Treap详解

    1. 概述 同splay tree一样,treap也是一个平衡二叉树,不过Treap会记录一个额外的数据,即优先级.Treap在以关键码构成二叉搜索树的同时,还按优先级来满足堆的性质.因而,Treap=tree+heap.这里需要注意的是,Treap并不是二叉堆,二叉堆必须是完全二叉树,而Treap可以并不一定是. 2. Treap基本操作 为了使Treap 中的节点同时满足BST性质和最小堆性质,不可避免地要对其结构进行调整,调整方式被称为旋转.在维护Treap 的过程中,只有两种旋转,分别是

  • 数据结构之堆详解

    1. 概述 堆(也叫优先队列),是一棵完全二叉树,它的特点是父节点的值大于(小于)两个子节点的值(分别称为大顶堆和小顶堆).它常用于管理算法执行过程中的信息,应用场景包括堆排序,优先队列等. 2. 堆的基本操作 堆是一棵完全二叉树,高度为O(lg n),其基本操作至多与树的高度成正比.在介绍堆的基本操作之前,先介绍几个基本术语: A:用于表示堆的数组,下标从1开始,一直到n PARENT(t):节点t的父节点,即floor(t/2) RIGHT(t):节点t的左孩子节点,即:2*t LEFT(t

  • C++数据结构之堆详解

    目录 堆的概念 提示:完全二叉树 堆的性质 最大堆最小堆 代码 定义 有限数组形式 动态数组形式 操作 向下调整结点 建立堆 初始化 打印堆 测试 main函数 结果 完整代码 堆的概念 堆(heap)是计算机科学中一类特殊的数据结构的统称.堆通常是一个可以被看做一棵树的数组对象,即是一种顺序储存结构的完全二叉树. 提示:完全二叉树 完全二叉树:对一棵深度为k.有n个结点二叉树编号后,各节点的编号与深度为k的满二叉树相同位置的结点的编号相同,这颗二叉树就被称为完全二叉树.[2] 堆的性质 堆中某

  • C语言数据结构之堆排序详解

    目录 1.堆的概念及结构 2.堆的实现 2.1堆的向下调整算法 2.2堆的向上调整算法 2.3建堆(数组) 2.4堆排序 2.5堆排序的时间复杂度 1.堆的概念及结构 如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树(二叉树具体概念参见——二叉树详解)的顺序存储方式存储在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为小堆(或大

  • C语言数据结构之二叉树详解

    目录 1. 树概念及结构 1.1树概念 1.2树的表示 2. 二叉树概念及结构 2.1概念 2.2数据结构中的二叉树 2.3特殊的二叉树 2.4二叉树的存储结构 2.5二叉树的性质 3. 二叉树顺序结构及概念 3.1二叉树的顺序结构 3.2堆的概念及结构 3.3堆的实现 4. 二叉树链式结构及实现 4.1二叉树链式结构的遍历 4.2二叉树的链式实现 1. 树概念及结构 1.1树概念 树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合.把它叫做树是因为它看起来像一棵

  • JavaScript数据结构链表知识详解

    最近在看<javascript数据结构和算法>这本书,补一下数据结构和算法部分的知识,觉得自己这块是短板. 链表:存储有序的元素集合,但不同于数组,链表中的元素在内存中不是连续放置的.每个元素由一个存储元素本身的节点和一个指向下一个元素的引用(也称指针或链接)组成. 好处:可以添加或移除任意项,它会按需扩容,且不需要移动其他元素. 与数组的区别: 数组:可以直接访问任何位置的任何元素: 链表:想要访问链表中的一个元素,需要从起点(表头)开始迭代列表直到找到所需的元素. 做点小笔记. funct

  • C语言数据结构 快速排序实例详解

    C语言数据结构 快速排序实例详解 一.快速排序简介 快速排序采用分治的思想,第一趟先将一串数字分为两部分,第一部分的数值都比第二部分要小,然后按照这种方法,依次对两边的数据进行排序. 二.代码实现 #include <stdio.h> /* 将两个数据交换 */ void swap(int* Ina , int* Inb) { int temp = *Ina; *Ina = *Inb; *Inb = temp; } /* 进行一趟的快速排序,把一个序列分为两个部分 */ int getPart

  • Java语言实现数据结构栈代码详解

    近来复习数据结构,自己动手实现了栈.栈是一种限制插入和删除只能在一个位置上的表.最基本的操作是进栈和出栈,因此,又被叫作"先进后出"表. 首先了解下栈的概念: 栈是限定仅在表头进行插入和删除操作的线性表.有时又叫LIFO(后进先出表).要搞清楚这个概念,首先要明白"栈"原来的意思,如此才能把握本质. "栈"者,存储货物或供旅客住宿的地方,可引申为仓库.中转站,所以引入到计算机领域里,就是指数据暂时存储的地方,所以才有进栈.出栈的说法. 实现方式是

  • redis中的数据结构和编码详解

    redis中的数据结构和编码:     背景: 1>redis在内部使用redisObject结构体来定义存储的值对象. 2>每种类型都有至少两种内部编码,Redis会根据当前值的类型和长度来决定使用哪种编码实现. 3>编码类型转换在Redis写入数据时自动完成,这个转换过程是不可逆的,转换规则只能从小内存编码向大内存编码转换.     源码: 值对象redisObject: typedef struct redisObject {                 unsigned ty

  • Java数据结构之链表详解

    一.链表的介绍 什么是链表 链表是一种物理存储单元上非连续.非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的.链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成.每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域. 相比于线性表顺序结构,操作复杂.由于不必须按顺序存储,链表在插入的时候可以达到O(1)的复杂度,比另一种线性表顺序表快得多,但是查找一个节点或者访问特定编号的节点则需要O(n)的时间,而线性表和顺序表相应的

  • C++数据结构之list详解

    目录 前言 一.list的节点 二.list的迭代器 2.1 const 迭代器 2.2 修改方法 二.美中不足 三.迭代器的分类 3.x std::find的一个报错 总结 前言 list相较于vector来说会显得复杂,它的好处是在任意位置插入,删除都是一个O(1)的时间复杂度. 一.list的节点 template <class T> struct __list_node { typedef void* void_pointer; void_pointer next; void_poin

随机推荐