Python实现朴素贝叶斯分类器的方法详解

本文实例讲述了Python实现朴素贝叶斯分类器的方法。分享给大家供大家参考,具体如下:

贝叶斯定理

贝叶斯定理是通过对观测值概率分布的主观判断(即先验概率)进行修正的定理,在概率论中具有重要地位。

先验概率分布(边缘概率)是指基于主观判断而非样本分布的概率分布,后验概率(条件概率)是根据样本分布和未知参数的先验概率分布求得的条件概率分布。

贝叶斯公式:

P(A∩B) = P(A)*P(B|A) = P(B)*P(A|B)

变形得:

P(A|B)=P(B|A)*P(A)/P(B)

其中

  • P(A)是A的先验概率或边缘概率,称作"先验"是因为它不考虑B因素。
  • P(A|B)是已知B发生后A的条件概率,也称作A的后验概率。
  • P(B|A)是已知A发生后B的条件概率,也称作B的后验概率,这里称作似然度。
  • P(B)是B的先验概率或边缘概率,这里称作标准化常量。
  • P(B|A)/P(B)称作标准似然度。

朴素贝叶斯分类(Naive Bayes)

朴素贝叶斯分类器在估计类条件概率时假设属性之间条件独立。

首先定义

  • x = {a1,a2,...}为一个样本向量,a为一个特征属性
  • div = {d1 = [l1,u1],...} 特征属性的一个划分
  • class = {y1,y2,...}样本所属的类别

算法流程:

(1) 通过样本集中类别的分布,对每个类别计算先验概率p(y[i])

(2) 计算每个类别下每个特征属性划分的频率p(a[j] in d[k] | y[i])

(3) 计算每个样本的p(x|y[i])

p(x|y[i]) = p(a[1] in d | y[i]) * p(a[2] in d | y[i]) * ...

样本的所有特征属性已知,所以特征属性所属的区间d已知。

可以通过(2)确定p(a[k] in d | y[i])的值,从而求得p(x|y[i])

(4) 由贝叶斯定理得:

p(y[i]|x) = ( p(x|y[i]) * p(y[i]) ) / p(x)

因为分母相同,只需计算分子。

p(y[i]|x)是观测样本属于分类y[i]的概率,找出最大概率对应的分类作为分类结果。

示例:

导入数据集

{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 1, a2 = 0, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 0, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}

计算类别的先验概率

P(C = 0) = 0.5
P(C = 1) = 0.5

计算每个特征属性条件概率:

P(a1 = 0 | C = 0) = 0.3
P(a1 = 1 | C = 0) = 0.7
P(a2 = 0 | C = 0) = 0.4
P(a2 = 1 | C = 0) = 0.6
P(a1 = 0 | C = 1) = 0.5
P(a1 = 1 | C = 1) = 0.5
P(a2 = 0 | C = 1) = 0.7
P(a2 = 1 | C = 1) = 0.3

测试样本:

x = { a1 = 1, a2 = 2}
p(x | C = 0) = p(a1 = 1 | C = 0) * p( 2 = 2 | C = 0) = 0.3 * 0.6 = 0.18
p(x | C = 1) = p(a1 = 1 | C = 1) * p (a2 = 2 | C = 1) = 0.5 * 0.3 = 0.15

计算P(C | x) * p(x):

P(C = 0) * p(x | C = 1) = 0.5 * 0.18 = 0.09
P(C = 1) * p(x | C = 2) = 0.5 * 0.15 = 0.075

所以认为测试样本属于类型C1

Python实现

朴素贝叶斯分类器的训练过程为计算(1),(2)中的概率表,应用过程为计算(3),(4)并寻找最大值。

还是使用原来的接口进行类封装:

from numpy import *
class NaiveBayesClassifier(object):
  def __init__(self):
    self.dataMat = list()
    self.labelMat = list()
    self.pLabel1 = 0
    self.p0Vec = list()
    self.p1Vec = list()
  def loadDataSet(self,filename):
    fr = open(filename)
    for line in fr.readlines():
      lineArr = line.strip().split()
      dataLine = list()
      for i in lineArr:
        dataLine.append(float(i))
      label = dataLine.pop() # pop the last column referring to label
      self.dataMat.append(dataLine)
      self.labelMat.append(int(label))
  def train(self):
    dataNum = len(self.dataMat)
    featureNum = len(self.dataMat[0])
    self.pLabel1 = sum(self.labelMat)/float(dataNum)
    p0Num = zeros(featureNum)
    p1Num = zeros(featureNum)
    p0Denom = 1.0
    p1Denom = 1.0
    for i in range(dataNum):
      if self.labelMat[i] == 1:
        p1Num += self.dataMat[i]
        p1Denom += sum(self.dataMat[i])
      else:
        p0Num += self.dataMat[i]
        p0Denom += sum(self.dataMat[i])
    self.p0Vec = p0Num/p0Denom
    self.p1Vec = p1Num/p1Denom
  def classify(self, data):
    p1 = reduce(lambda x, y: x * y, data * self.p1Vec) * self.pLabel1
    p0 = reduce(lambda x, y: x * y, data * self.p0Vec) * (1.0 - self.pLabel1)
    if p1 > p0:
      return 1
    else:
      return 0
  def test(self):
    self.loadDataSet('testNB.txt')
    self.train()
    print(self.classify([1, 2]))
if __name__ == '__main__':
  NB = NaiveBayesClassifier()
  NB.test()

Matlab

Matlab的标准工具箱提供了对朴素贝叶斯分类器的支持:

trainData = [0 1; -1 0; 2 2; 3 3; -2 -1;-4.5 -4; 2 -1; -1 -3];
group = [1 1 -1 -1 1 1 -1 -1]';
model = fitcnb(trainData, group)
testData = [5 2;3 1;-4 -3];
predict(model, testData)

fitcnb用来训练模型,predict用来预测。

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • 朴素贝叶斯分类算法原理与Python实现与使用方法案例

    本文实例讲述了朴素贝叶斯分类算法原理与Python实现与使用方法.分享给大家供大家参考,具体如下: 朴素贝叶斯分类算法 1.朴素贝叶斯分类算法原理 1.1.概述 贝叶斯分类算法是一大类分类算法的总称 贝叶斯分类算法以样本可能属于某类的概率来作为分类依据 朴素贝叶斯分类算法是贝叶斯分类算法中最简单的一种 注:朴素的意思是条件概率独立性 P(A|x1x2x3x4)=p(A|x1)*p(A|x2)p(A|x3)p(A|x4)则为条件概率独立 P(xy|z)=p(xyz)/p(z)=p(xz)/p(z)

  • Python实现的朴素贝叶斯分类器示例

    本文实例讲述了Python实现的朴素贝叶斯分类器.分享给大家供大家参考,具体如下: 因工作中需要,自己写了一个朴素贝叶斯分类器. 对于未出现的属性,采取了拉普拉斯平滑,避免未出现的属性的概率为零导致整个条件概率都为零的情况出现. 朴素贝叶斯的基本原理网上很容易查到,这里不再叙述,直接附上代码 因工作中需要,自己写了一个朴素贝叶斯分类器.对于未出现的属性,采取了拉普拉斯平滑,避免未出现的属性的概率为零导致整个条件概率都为零的情况出现. class NBClassify(object): def _

  • Python实现的朴素贝叶斯算法经典示例【测试可用】

    本文实例讲述了Python实现的朴素贝叶斯算法.分享给大家供大家参考,具体如下: 代码主要参考机器学习实战那本书,发现最近老外的书确实比中国人写的好,由浅入深,代码通俗易懂,不多说上代码: #encoding:utf-8 ''''' Created on 2015年9月6日 @author: ZHOUMEIXU204 朴素贝叶斯实现过程 ''' #在该算法中类标签为1和0,如果是多标签稍微改动代码既可 import numpy as np path=u"D:\\Users\\zhoumeixu2

  • 朴素贝叶斯Python实例及解析

    本文实例为大家分享了Python朴素贝叶斯实例代码,供大家参考,具体内容如下 #-*- coding: utf-8 -*- #添加中文注释 from numpy import * #过滤网站的恶意留言 #样本数据 def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park'

  • python中如何使用朴素贝叶斯算法

    这里再重复一下标题为什么是"使用"而不是"实现": 首先,专业人士提供的算法比我们自己写的算法无论是效率还是正确率上都要高. 其次,对于数学不好的人来说,为了实现算法而去研究一堆公式是很痛苦的事情. 再次,除非他人提供的算法满足不了自己的需求,否则没必要"重复造轮子". 下面言归正传,不了解贝叶斯算法的可以去查一下相关资料,这里只是简单介绍一下: 1.贝叶斯公式: P(A|B)=P(AB)/P(B) 2.贝叶斯推断: P(A|B)=P(A)×P(

  • python实现基于朴素贝叶斯的垃圾分类算法

    一.模型方法 本工程采用的模型方法为朴素贝叶斯分类算法,它的核心算法思想基于概率论.我们称之为"朴素",是因为整个形式化过程只做最原始.最简单的假设.朴素贝叶斯是贝叶斯决策理论的一部分,所以讲述朴素贝叶斯之前有必要快速了解一下贝叶斯决策理论.假设现在我们有一个数据集,它由两类数据组成,数据分布如下图所示. 我们现在用p1(x,y)表示数据点(x,y)属于类别1(图中用圆点表示的类别)的概率,用p2(x,y)表示数据点(x,y)属于类别2(图中用三角形表示的类别)的概率,那么对于一个新数

  • 使用Python轻松完成垃圾分类(基于图像识别)

    0 环境 Python版本:3.6.8 系统版本:macOS Mojave Python Jupyter Notebook 1 引言 七月了,大家最近一定被一项新的政策给折磨的焦头烂额,那就是垃圾分类.<上海市生活垃圾管理条例>已经正式实施了,相信还是有很多的小伙伴和我一样,还没有完全搞清楚哪些应该扔在哪个类别里.感觉每天都在学习一遍垃圾分类,真令人头大. 听说一杯没有喝完的珍珠奶茶应该这么扔 首先,没喝完的奶茶水要倒在水池里 珍珠,水果肉等残渣放进湿垃圾 把杯子要丢入干垃圾 接下来是盖子,如

  • Python编程之基于概率论的分类方法:朴素贝叶斯

    概率论啊概率论,差不多忘完了. 基于概率论的分类方法:朴素贝叶斯 1. 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础--贝叶斯定理.最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类. 2. 贝叶斯理论 & 条件概率 2.1 贝叶斯理论 我们现在有一个数据集,它由两类数据组成,数据分布如下图所示: 我们现在用 p1(x,y) 表示数据点 (x,y) 属于类别 1(图中用圆点表示的类别)的概率,用 p2(

  • 使用Python做垃圾分类的原理及实例代码

    0 引言 纸巾再湿也是干垃圾?瓜子皮再干也是湿垃圾??最近大家都被垃圾分类折磨的不行,傻傻的你是否拎得清?

  • python实现朴素贝叶斯分类器

    本文用的是sciki-learn库的iris数据集进行测试.用的模型也是最简单的,就是用贝叶斯定理P(A|B) = P(B|A)*P(A)/P(B),计算每个类别在样本中概率(代码中是pLabel变量) 以及每个类下每个特征的概率(代码中是pNum变量). 写得比较粗糙,对于某个类下没有此特征的情况采用p=1/样本数量. 有什么错误有人发现麻烦提出,谢谢. [python] view plain copy # -*- coding:utf-8 -*- from numpy import * fr

随机推荐