pytorch中tensor的合并与截取方法
合并:
torch.cat(inputs=(a, b), dimension=1) e.g. x = torch.cat((x,y), 0) 沿x轴合并
截取:
x[:, 2:4]
以上这篇pytorch中tensor的合并与截取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
Pytorch Tensor的索引与切片例子
1. Pytorch风格的索引 根据Tensor的shape,从前往后索引,依次在每个维度上做索引. 示例代码: import torch a = torch.rand(4, 3, 28, 28) print(a[0].shape) #取到第一个维度 print(a[0, 0].shape) # 取到二个维度 print(a[1, 2, 2, 4]) # 具体到某个元素 上述代码创建了一个shape=[4, 3, 28, 28]的Tensor,我们可以理解为4张图片,每张图片有3个通道,每个通道
-
pytorch: tensor类型的构建与相互转换实例
Summary 主要包括以下三种途径: 使用独立的函数: 使用torch.type()函数: 使用type_as(tesnor)将张量转换为给定类型的张量. 使用独立函数 import torch tensor = torch.randn(3, 5) print(tensor) # torch.long() 将tensor投射为long类型 long_tensor = tensor.long() print(long_tensor) # torch.half()将tensor投射为半精度浮点类型
-
pytorch中tensor的合并与截取方法
合并: torch.cat(inputs=(a, b), dimension=1) e.g. x = torch.cat((x,y), 0) 沿x轴合并 截取: x[:, 2:4] 以上这篇pytorch中tensor的合并与截取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
-
PyTorch中Tensor的数据统计示例
张量范数:torch.norm(input, p=2) → float 返回输入张量 input 的 p 范数 举个例子: >>> import torch >>> a = torch.full([8], 1) >>> b = a.view(2, 4) >>> c = a.view(2, 2, 2) >>> a.norm(1), b.norm(1), c.norm(1) # 求 1- 范数 (tensor(8.),
-
PyTorch中Tensor的数据类型和运算的使用
在使用Tensor时,我们首先要掌握如何使用Tensor来定义不同数据类型的变量.Tensor时张量的英文,表示多维矩阵,和numpy对应,PyTorch中的Tensor可以和numpy的ndarray相互转换,唯一不同的是PyTorch可以在GPU上运行,而numpy的ndarray只能在cpu上运行. 常用的不同数据类型的Tensor,有32位的浮点型torch.FloatTensor, 64位浮点型 torch.DoubleTensor, 16位整形torch.ShortTenso
-
在PyTorch中Tensor的查找和筛选例子
本文源码基于版本1.0,交互界面基于0.4.1 import torch 按照指定轴上的坐标进行过滤 index_select() 沿着某tensor的一个轴dim筛选若干个坐标 >>> x = torch.randn(3, 4) # 目标矩阵 >>> x tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], [-0.4664, 0.2647, -0.1228, -1.1068], [-1.1734, -0.6571, 0.7230,
-
pytorch中tensor.expand()和tensor.expand_as()函数详解
tensor.expend()函数 >>> import torch >>> a=torch.tensor([[2],[3],[4]]) >>> print(a.size()) torch.Size([3, 1]) >>> a.expand(3,2) tensor([[2, 2], [3, 3], [4, 4]]) >>> a tensor([[2], [3], [4]]) 可以看出expand()函数括号里面为变形
-
pytorch中tensor张量数据类型的转化方式
1.tensor张量与numpy相互转换 tensor ----->numpy import torch a=torch.ones([2,5]) tensor([[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]]) # ********************************** b=a.numpy() array([[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]], dtype=float32) numpy --
-
对Pytorch中Tensor的各种池化操作解析
AdaptiveAvgPool1d(N) 对一个C*H*W的三维输入Tensor, 池化输出为C*H*N, 即按照H轴逐行对W轴平均池化 >>> a = torch.ones(2,3,4) >>> a[0,1,2] = 0 >>>> a tensor([[[1., 1., 1., 1.], [1., 1., 0., 1.], [1., 1., 1., 1.]], [[1., 1., 1., 1.], [1., 1., 1., 1.], [1.,
-
PyTorch中 tensor.detach() 和 tensor.data 的区别详解
PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad = False, 这样有些时候是不安全的, 因为 x.data 不能被 autograd 追踪求微分 . .detach() 返回相同数据的 tensor ,且 requires_grad=False ,但能通过 in-place 操作报告给 autograd 在进行反向传播的时候. 举例: ten
-
pytorch中Tensor.to(device)和model.to(device)的区别及说明
目录 Tensor.to(device)和model.to(device)的区别 区别所在 举例 pytorch学习笔记--to(device)用法 这段代码到底有什么用呢? 为什么要在GPU上做运算呢? .cuda()和.to(device)的效果一样吗?为什么后者更好? 如果你有多个GPU Tensor.to(device)和model.to(device)的区别 区别所在 使用GPU训练的时候,需要将Module对象和Tensor类型的数据送入到device.通常会使用 to.(devic
-
Pytorch中Tensor与各种图像格式的相互转化详解
前言 在pytorch中经常会遇到图像格式的转化,例如将PIL库读取出来的图片转化为Tensor,亦或者将Tensor转化为numpy格式的图片.而且使用不同图像处理库读取出来的图片格式也不相同,因此,如何在pytorch中正确转化各种图片格式(PIL.numpy.Tensor)是一个在调试中比较重要的问题. 本文主要说明在pytorch中如何正确将图片格式在各种图像库读取格式以及tensor向量之间转化的问题.以下代码经过测试都可以在Pytorch-0.4.0或0.3.0版本直接使用. 对py
随机推荐
- JavaScript小技巧 2.5 则
- 用JS获得表格当前行数的代码
- jQuery EasyUI API 中文文档 - ComboBox组合框
- Android 中 EventBus 的使用之多线程事件处理
- java 微信随机红包算法代码实例
- 判断客户端浏览器是否安装了Flash插件的多种方法
- PHP快速推送微信模板消息
- python 字符串split的用法分享
- mysql中IFNULL,IF,CASE的区别介绍
- 使用Rotate Master实现MySQL 多主复制的实现方法
- MYSQL IN 与 EXISTS 的优化示例介绍
- 深入理解python多进程编程
- Javascript 拖拽雏形中的一些问题(逐行分析代码,让你轻松了拖拽的原理)
- 图片批量压缩大小脚本分享
- jQuery如何实现点击页面获得当前点击元素的id或其他信息
- Javascript highcharts 饼图显示数量和百分比实例代码
- C语言借助EasyX实现的生命游戏源码
- 简单谈谈apache与nginx
- java加密解密示例分享
- php+oracle 分页类