pytorch中tensor的合并与截取方法

合并:

torch.cat(inputs=(a, b), dimension=1)

e.g. x = torch.cat((x,y), 0) 沿x轴合并

截取:

x[:, 2:4]

以上这篇pytorch中tensor的合并与截取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch: tensor类型的构建与相互转换实例

    Summary 主要包括以下三种途径: 使用独立的函数: 使用torch.type()函数: 使用type_as(tesnor)将张量转换为给定类型的张量. 使用独立函数 import torch tensor = torch.randn(3, 5) print(tensor) # torch.long() 将tensor投射为long类型 long_tensor = tensor.long() print(long_tensor) # torch.half()将tensor投射为半精度浮点类型

  • Pytorch Tensor的索引与切片例子

    1. Pytorch风格的索引 根据Tensor的shape,从前往后索引,依次在每个维度上做索引. 示例代码: import torch a = torch.rand(4, 3, 28, 28) print(a[0].shape) #取到第一个维度 print(a[0, 0].shape) # 取到二个维度 print(a[1, 2, 2, 4]) # 具体到某个元素 上述代码创建了一个shape=[4, 3, 28, 28]的Tensor,我们可以理解为4张图片,每张图片有3个通道,每个通道

  • pytorch中tensor的合并与截取方法

    合并: torch.cat(inputs=(a, b), dimension=1) e.g. x = torch.cat((x,y), 0) 沿x轴合并 截取: x[:, 2:4] 以上这篇pytorch中tensor的合并与截取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • PyTorch中Tensor的数据统计示例

    张量范数:torch.norm(input, p=2) → float 返回输入张量 input 的 p 范数 举个例子: >>> import torch >>> a = torch.full([8], 1) >>> b = a.view(2, 4) >>> c = a.view(2, 2, 2) >>> a.norm(1), b.norm(1), c.norm(1) # 求 1- 范数 (tensor(8.),

  • PyTorch中Tensor的数据类型和运算的使用

    在使用Tensor时,我们首先要掌握如何使用Tensor来定义不同数据类型的变量.Tensor时张量的英文,表示多维矩阵,和numpy对应,PyTorch中的Tensor可以和numpy的ndarray相互转换,唯一不同的是PyTorch可以在GPU上运行,而numpy的ndarray只能在cpu上运行. 常用的不同数据类型的Tensor,有32位的浮点型torch.FloatTensor,   64位浮点型 torch.DoubleTensor,   16位整形torch.ShortTenso

  • 在PyTorch中Tensor的查找和筛选例子

    本文源码基于版本1.0,交互界面基于0.4.1 import torch 按照指定轴上的坐标进行过滤 index_select() 沿着某tensor的一个轴dim筛选若干个坐标 >>> x = torch.randn(3, 4) # 目标矩阵 >>> x tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], [-0.4664, 0.2647, -0.1228, -1.1068], [-1.1734, -0.6571, 0.7230,

  • pytorch中tensor.expand()和tensor.expand_as()函数详解

    tensor.expend()函数 >>> import torch >>> a=torch.tensor([[2],[3],[4]]) >>> print(a.size()) torch.Size([3, 1]) >>> a.expand(3,2) tensor([[2, 2], [3, 3], [4, 4]]) >>> a tensor([[2], [3], [4]]) 可以看出expand()函数括号里面为变形

  • pytorch中tensor张量数据类型的转化方式

    1.tensor张量与numpy相互转换 tensor ----->numpy import torch a=torch.ones([2,5]) tensor([[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]]) # ********************************** b=a.numpy() array([[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]], dtype=float32) numpy --

  • 对Pytorch中Tensor的各种池化操作解析

    AdaptiveAvgPool1d(N) 对一个C*H*W的三维输入Tensor, 池化输出为C*H*N, 即按照H轴逐行对W轴平均池化 >>> a = torch.ones(2,3,4) >>> a[0,1,2] = 0 >>>> a tensor([[[1., 1., 1., 1.], [1., 1., 0., 1.], [1., 1., 1., 1.]], [[1., 1., 1., 1.], [1., 1., 1., 1.], [1.,

  • PyTorch中 tensor.detach() 和 tensor.data 的区别详解

    PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad = False, 这样有些时候是不安全的, 因为 x.data 不能被 autograd 追踪求微分 . .detach() 返回相同数据的 tensor ,且 requires_grad=False ,但能通过 in-place 操作报告给 autograd 在进行反向传播的时候. 举例: ten

  • pytorch中Tensor.to(device)和model.to(device)的区别及说明

    目录 Tensor.to(device)和model.to(device)的区别 区别所在 举例 pytorch学习笔记--to(device)用法 这段代码到底有什么用呢? 为什么要在GPU上做运算呢? .cuda()和.to(device)的效果一样吗?为什么后者更好? 如果你有多个GPU Tensor.to(device)和model.to(device)的区别 区别所在 使用GPU训练的时候,需要将Module对象和Tensor类型的数据送入到device.通常会使用 to.(devic

  • Pytorch中Tensor与各种图像格式的相互转化详解

    前言 在pytorch中经常会遇到图像格式的转化,例如将PIL库读取出来的图片转化为Tensor,亦或者将Tensor转化为numpy格式的图片.而且使用不同图像处理库读取出来的图片格式也不相同,因此,如何在pytorch中正确转化各种图片格式(PIL.numpy.Tensor)是一个在调试中比较重要的问题. 本文主要说明在pytorch中如何正确将图片格式在各种图像库读取格式以及tensor向量之间转化的问题.以下代码经过测试都可以在Pytorch-0.4.0或0.3.0版本直接使用. 对py

随机推荐