java算法实现红黑树完整代码示例

红黑树

定义

红黑树(英语:Red–black tree)是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。

红黑树的另一种定义是含有红黑链接并满足下列条件的二叉查找树:

红链接均为左链接;没有任何一个结点同时和两条红链接相连;该树是完美黑色平衡的,即任意空链接到根结点的路径上的黑链接数量相同。

满足这样定义的红黑树和相应的2-3树是一一对应的。

旋转

旋转又分为左旋和右旋。通常左旋操作用于将一个向右倾斜的红色链接旋转为向左链接。对比操作前后,可以看出,该操作实际上是将红线链接的两个节点中的一个较大的节点移动到根节点上。

左旋操作如下图:

右旋旋操作如下图:

即:

复杂度

红黑树的平均高度大约为lgN。

下图是红黑树在各种情况下的时间复杂度,可以看出红黑树是2-3查找树的一种实现,他能保证最坏情况下仍然具有对数的时间复杂度。

Java代码

import java.util.NoSuchElementException;
import java.util.Scanner;
public class RedBlackBST<key extends="" key="">, Value> {
  private static final boolean RED = true;
  private static final boolean BLACK = false;
  private Node root; //root of the BST
  private class Node {
    private Key key;      //key
    private Value val;     //associated data
    private Node left, right;  //links to left and right subtrees
    private boolean color;   //color of parent link
    private int size;      //subtree count
    public Node(Key key, Value val, boolean color, int size) {
      this.key = key;
      this.val = val;
      this.color = color;
      this.size = size;
    }
  }
  //is node x red?
  private boolean isRed(Node x) {
    if(x == null) {
      return false;
    }
    return x.color == RED;
  }
  //number of node in subtree rooted at x; 0 if x is null
  private int size(Node x) {
    if(x == null) {
      return 0;
    }
    return x.size;
  }
  /**
   * return the number of key-value pairs in this symbol table
   * @return the number of key-value pairs in this symbol table
   */
  public int size() {
    return size(root);
  }
  /**
   * is this symbol table empty?
   * @return true if this symbol table is empty and false otherwise
   */
  public boolean isEmpty() {
    return root == null;
  }
  /**
   * return the value associated with the given key
   * @param key the key
   * @return the value associated with the given key if the key is in the symbol table, and null if it is not.
   */
  public Value get(Key key) {
    if(key == null) {
      throw new NullPointerException("argument to get() is null");
    }
    return get(root, key);
  }
  //value associated with the given key in subtree rooted at x; null if no such key
  private Value get(Node x, Key key) {
    while(x != null) {
      int cmp = key.compareTo(x.key);
      if(cmp < 0) {
        x = x.left;
      }
      else if(cmp > 0) {
        x = x.right;
      }
      else {
        return x.val;
      }
    }
    return null;
  }
  /**
   * does this symbol table contain the given key?
   * @param key the key
   * @return true if this symbol table contains key and false otherwise
   */
  public boolean contains(Key key) {
    return get(key) != null;
  }
  /***************************************************************************
  * Red-black tree insertion.
  ***************************************************************************/
  /**
   * Inserts the specified key-value pair into the symbol table, overwriting the old
   * value with the new value if the symbol table already contains the specified key.
   * Deletes the specified key (and its associated value) from this symbol table
   * if the specified value is null.
   *
   * @param key the key
   * @param val the value
   * @throws NullPointerException if key is null
   */
  public void put(Key key, Value val) {
    if (key == null) {
      throw new NullPointerException("first argument to put() is null");
    }
    if (val == null) {
      delete(key);
      return;
    }
    root = put(root, key, val);
    root.color = BLACK;
  }
  // insert the key-value pair in the subtree rooted at h
  private Node put(Node h, Key key, Value val) {
    if(h == null) {
      return new Node(key, val, RED, 1);
    }
    int cmp = key.compareTo(h.key);
    if(cmp < 0) {
      h.left = put(h.left, key, val);
    }
    else if(cmp > 0) {
      h.right = put(h.right, key, val);
    }
    else {
      h.val = val;
    }
    if(isRed(h.right) && !isRed(h.left)) {
      h = rotateLeft(h);
    }
    if(isRed(h.left) && isRed(h.left.left)) {
      h = rotateRight(h);
    }
    if(isRed(h.left) && isRed(h.right)) {
      flipColors(h);
    }
    h.size = size(h.left) + size(h.right) + 1;
    return h;
  }
  /***************************************************************************
  * Red-black tree deletion.
  ***************************************************************************/

  /**
   * Removes the smallest key and associated value from the symbol table.
   * @throws NoSuchElementException if the symbol table is empty
   */
  public void deleteMin() {
    if (isEmpty()) {
      throw new NoSuchElementException("BST underflow");
    }
    // if both children of root are black, set root to red
    if (!isRed(root.left) && !isRed(root.right))
      root.color = RED;
    root = deleteMin(root);
    if (!isEmpty()) root.color = BLACK;
    // assert check();
  }
  // delete the key-value pair with the minimum key rooted at h
  // delete the key-value pair with the minimum key rooted at h
  private Node deleteMin(Node h) {
    if (h.left == null){
      return null;
    }
    if (!isRed(h.left) && !isRed(h.left.left)) {
      h = moveRedLeft(h);
    }
    h.left = deleteMin(h.left);
    return balance(h);
  }
  /**
   * Removes the largest key and associated value from the symbol table.
   * @throws NoSuchElementException if the symbol table is empty
   */
  public void deleteMax() {
    if (isEmpty()) {
      throw new NoSuchElementException("BST underflow");
    }
    // if both children of root are black, set root to red
    if (!isRed(root.left) && !isRed(root.right))
      root.color = RED;
    root = deleteMax(root);
    if (!isEmpty()) root.color = BLACK;
    // assert check();
  }
  // delete the key-value pair with the maximum key rooted at h
  // delete the key-value pair with the maximum key rooted at h
  private Node deleteMax(Node h) {
      if (isRed(h.left))
        h = rotateRight(h);
      if (h.right == null)
        return null;
      if (!isRed(h.right) && !isRed(h.right.left))
        h = moveRedRight(h);
      h.right = deleteMax(h.right);
      return balance(h);
    }
  /**
   * remove the specified key and its associated value from this symbol table
   * (if the key is in this symbol table).
   *
   * @param key the key
   * @throws NullPointerException if key is null
   */
  public void delete(Key key) {
    if (key == null) {
      throw new NullPointerException("argument to delete() is null");
    }
    if (!contains(key)) {
      return;
    }
    //if both children of root are black, set root to red
    if(!isRed(root.left) && !isRed(root.right)) {
      root.color = RED;
    }
    root = delete(root, key);
    if(!isEmpty()) {
      root.color = BLACK;
    }
  }
  // delete the key-value pair with the given key rooted at h
  // delete the key-value pair with the given key rooted at h
  private Node delete(Node h, Key key) {
    if(key.compareTo(h.key) < 0) {
      if(!isRed(h.left) && !isRed(h.left.left)) {
        h = moveRedLeft(h);
      }
      h.left = delete(h.left, key);
    }
    else {
      if(isRed(h.left)) {
        h = rotateRight(h);
      }
      if (key.compareTo(h.key) == 0 && (h.right == null)) {
        return null;
      }
      if (!isRed(h.right) && !isRed(h.right.left)) {
        h = moveRedRight(h);
      }
      if (key.compareTo(h.key) == 0) {
        Node x = min(h.right);
        h.key = x.key;
        h.val = x.val;
        h.right = deleteMin(h.right);
      }
      else {
        h.right = delete(h.right, key);
      }
    }
    return balance(h);
  }
  /***************************************************************************
  * Red-black tree helper functions.
  ***************************************************************************/
  // make a left-leaning link lean to the right
  // make a left-leaning link lean to the right
  private Node rotateRight(Node h) {
    // assert (h != null) && isRed(h.left);
    Node x = h.left;
    h.left = x.right;
    x.right = h;
    x.color = x.right.color;
    x.right.color = RED;
    x.size = h.size;
    h.size = size(h.left) + size(h.right) + 1;
    return x;
  }
  // make a right-leaning link lean to the left
  // make a right-leaning link lean to the left
  private Node rotateLeft(Node h) {
    // assert (h != null) && isRed(h.right);
    Node x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = x.left.color;
    x.left.color = RED;
    x.size = h.size;
    h.size = size(h.left) + size(h.right) + 1;
    return x;
  }
  // flip the colors of a node and its two children
  // flip the colors of a node and its two children
  private void flipColors(Node h) {
    // h must have opposite color of its two children
    // assert (h != null) && (h.left != null) && (h.right != null);
    // assert (!isRed(h) && isRed(h.left) && isRed(h.right))
    //  || (isRed(h) && !isRed(h.left) && !isRed(h.right));
    h.color = !h.color;
    h.left.color = !h.left.color;
    h.right.color = !h.right.color;
  }
  // Assuming that h is red and both h.left and h.left.left
  // are black, make h.left or one of its children red.
  // Assuming that h is red and both h.left and h.left.left
  // are black, make h.left or one of its children red.
  private Node moveRedLeft(Node h) {
    // assert (h != null);
    // assert isRed(h) && !isRed(h.left) && !isRed(h.left.left);
    flipColors(h);
    if (isRed(h.right.left)) {
      h.right = rotateRight(h.right);
      h = rotateLeft(h);
      flipColors(h);
    }
    return h;
  }
  // Assuming that h is red and both h.right and h.right.left
  // are black, make h.right or one of its children red.
  // Assuming that h is red and both h.right and h.right.left
  // are black, make h.right or one of its children red.
  private Node moveRedRight(Node h) {
    // assert (h != null);
    // assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);
    flipColors(h);
    if (isRed(h.left.left)) {
      h = rotateRight(h);
      flipColors(h);
    }
    return h;
  }
  // restore red-black tree invariant
  // restore red-black tree invariant
  private Node balance(Node h) {
    // assert (h != null);
    if (isRed(h.right)) {
      h = rotateLeft(h);
    }
    if (isRed(h.left) && isRed(h.left.left)) {
      h = rotateRight(h);
    }
    if (isRed(h.left) && isRed(h.right)) {
      flipColors(h);
    }
    h.size = size(h.left) + size(h.right) + 1;
    return h;
  }
  /***************************************************************************
   * Utility functions.
   ***************************************************************************/
   /**
   * Returns the height of the BST (for debugging).
   * @return the height of the BST (a 1-node tree has height 0)
   */
   public int height() {
     return height(root);
   }
   private int height(Node x) {
     if (x == null) {
       return -1;
     }
     return 1 + Math.max(height(x.left), height(x.right));
   }
  /***************************************************************************
   * Ordered symbol table methods.
   ***************************************************************************/
   /**
   * Returns the smallest key in the symbol table.
   * @return the smallest key in the symbol table
   * @throws NoSuchElementException if the symbol table is empty
   */
   public Key min() {
     if (isEmpty()) {
       throw new NoSuchElementException("called min() with empty symbol table");
     }
     return min(root).key;
   }
   // the smallest key in subtree rooted at x; null if no such key
   private Node min(Node x) {
     // assert x != null;
     if (x.left == null) {
       return x;
     }
     else {
       return min(x.left);
     }
   }
   /**
   * Returns the largest key in the symbol table.
   * @return the largest key in the symbol table
   * @throws NoSuchElementException if the symbol table is empty
   */
   public Key max() {
     if (isEmpty()) {
       throw new NoSuchElementException("called max() with empty symbol table");
     }
     return max(root).key;
   }
   // the largest key in the subtree rooted at x; null if no such key
   private Node max(Node x) {
     // assert x != null;
     if (x.right == null) {
       return x;
     }
     else {
       return max(x.right);
     }
   }
   /**
   * Returns the largest key in the symbol table less than or equal to key.
   * @param key the key
   * @return the largest key in the symbol table less than or equal to key
   * @throws NoSuchElementException if there is no such key
   * @throws NullPointerException if key is null
   */
   public Key floor(Key key) {
     if (key == null) {
       throw new NullPointerException("argument to floor() is null");
     }
     if (isEmpty()) {
       throw new NoSuchElementException("called floor() with empty symbol table");
     }
     Node x = floor(root, key);
     if (x == null) {
       return null;
     }
     else {
       return x.key;
     }
   }
   // the largest key in the subtree rooted at x less than or equal to the given key
   private Node floor(Node x, Key key) {
     if (x == null) {
       return null;
     }
     int cmp = key.compareTo(x.key);
     if (cmp == 0) {
       return x;
     }
     if (cmp < 0) {
       return floor(x.left, key);
     }
     Node t = floor(x.right, key);
     if (t != null) {
       return t;
     }
     else {
       return x;
     }
   }
   /**
   * Returns the smallest key in the symbol table greater than or equal to key.
   * @param key the key
   * @return the smallest key in the symbol table greater than or equal to key
   * @throws NoSuchElementException if there is no such key
   * @throws NullPointerException if key is null
   */
   public Key ceiling(Key key) {
     if (key == null) {
       throw new NullPointerException("argument to ceiling() is null");
     }
     if (isEmpty()) {
       throw new NoSuchElementException("called ceiling() with empty symbol table");
     }
     Node x = ceiling(root, key);
     if (x == null) {
       return null;
     }
     else {
       return x.key;
     }
   }
   // the smallest key in the subtree rooted at x greater than or equal to the given key
   private Node ceiling(Node x, Key key) {
     if (x == null) {
       return null;
     }
     int cmp = key.compareTo(x.key);
     if (cmp == 0) {
       return x;
     }
     if (cmp > 0) {
       return ceiling(x.right, key);
     }
     Node t = ceiling(x.left, key);
     if (t != null) {
       return t;
     }
     else {
       return x;
     }
   }
   /**
   * Return the kth smallest key in the symbol table.
   * @param k the order statistic
   * @return the kth smallest key in the symbol table
   * @throws IllegalArgumentException unless k is between 0 and
   *   <em>N</em> − 1
   */
   public Key select(int k) {
     if (k < 0 || k >= size()) {
       throw new IllegalArgumentException();
     }
     Node x = select(root, k);
     return x.key;
   }
   // the key of rank k in the subtree rooted at x
   private Node select(Node x, int k) {
     // assert x != null;
     // assert k >= 0 && k < size(x);
     int t = size(x.left);
     if   (t > k) {
       return select(x.left, k);
     }
     else if (t < k) {
       return select(x.right, k-t-1);
     }
     else {
       return x;
     }
   }
   /**
   * Return the number of keys in the symbol table strictly less than key.
   * @param key the key
   * @return the number of keys in the symbol table strictly less than key
   * @throws NullPointerException if key is null
   */
   public int rank(Key key) {
     if (key == null) {
       throw new NullPointerException("argument to rank() is null");
     }
     return rank(key, root);
   }
   // number of keys less than key in the subtree rooted at x
   private int rank(Key key, Node x) {
     if (x == null) {
       return 0;
     }
     int cmp = key.compareTo(x.key);
     if   (cmp < 0) {
       return rank(key, x.left);
     }
     else if (cmp > 0) {
       return 1 + size(x.left) + rank(key, x.right);
     }
     else {
       return size(x.left);
     }
   }
  /***************************************************************************
   * Range count and range search.
   ***************************************************************************/
   /**
   * Returns all keys in the symbol table as an Iterable.
   * To iterate over all of the keys in the symbol table named st,
   * use the foreach notation: for (Key key : st.keys()).
   * @return all keys in the symbol table as an Iterable
   */
   public Iterable<key> keys() {
     if (isEmpty()) {
       return new Queue<key>();
     }
     return keys(min(), max());
   }
   /**
   * Returns all keys in the symbol table in the given range,
   * as an Iterable.
   * @return all keys in the symbol table between lo
   *  (inclusive) and hi (exclusive) as an Iterable
   * @throws NullPointerException if either lo or hi
   *  is null
   */
   public Iterable<key> keys(Key lo, Key hi) {
     if (lo == null) {
       throw new NullPointerException("first argument to keys() is null");
     }
     if (hi == null) {
       throw new NullPointerException("second argument to keys() is null");
     }
     Queue<key> queue = new Queue<key>();
     // if (isEmpty() || lo.compareTo(hi) > 0) return queue;
     keys(root, queue, lo, hi);
     return queue;
   }
   // add the keys between lo and hi in the subtree rooted at x
   // to the queue
   private void keys(Node x, Queue<key> queue, Key lo, Key hi) {
     if (x == null) {
       return;
     }
     int cmplo = lo.compareTo(x.key);
     int cmphi = hi.compareTo(x.key);
     if (cmplo < 0) {
       keys(x.left, queue, lo, hi);
     }
     if (cmplo <= 0 && cmphi >= 0) {
       queue.enqueue(x.key);
     }
     if (cmphi > 0) {
       keys(x.right, queue, lo, hi);
     }
   }
   /**
   * Returns the number of keys in the symbol table in the given range.
   * @return the number of keys in the symbol table between lo
   *  (inclusive) and hi (exclusive)
   * @throws NullPointerException if either lo or hi
   *  is null
   */
   public int size(Key lo, Key hi) {
     if (lo == null) {
       throw new NullPointerException("first argument to size() is null");
     }
     if (hi == null) {
       throw new NullPointerException("second argument to size() is null");
     }
     if (lo.compareTo(hi) > 0) {
       return 0;
     }
     if (contains(hi)) {
       return rank(hi) - rank(lo) + 1;
     }
     else {
       return rank(hi) - rank(lo);
     }
   }
  /***************************************************************************
   * Check integrity of red-black tree data structure.
   ***************************************************************************/
   private boolean check() {
     if (!isBST())      System.out.println("Not in symmetric order");
     if (!isSizeConsistent()) System.out.println("Subtree counts not consistent");
     if (!isRankConsistent()) System.out.println("Ranks not consistent");
     if (!is23())       System.out.println("Not a 2-3 tree");
     if (!isBalanced())    System.out.println("Not balanced");
     return isBST() && isSizeConsistent() && isRankConsistent() && is23() && isBalanced();
   }
   // does this binary tree satisfy symmetric order?
   // Note: this test also ensures that data structure is a binary tree since order is strict
   private boolean isBST() {
     return isBST(root, null, null);
   }
   // is the tree rooted at x a BST with all keys strictly between min and max
   // (if min or max is null, treat as empty constraint)
   // Credit: Bob Dondero's elegant solution
   private boolean isBST(Node x, Key min, Key max) {
     if (x == null) {
       return true;
     }
     if (min != null && x.key.compareTo(min) <= 0) {
       return false;
     }
     if (max != null && x.key.compareTo(max) >= 0) {
       return false;
     }
     return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
   }
   // are the size fields correct?
   private boolean isSizeConsistent() {
     return isSizeConsistent(root);
   }
   private boolean isSizeConsistent(Node x) {
     if (x == null) {
       return true;
     }
     if (x.size != size(x.left) + size(x.right) + 1) {
       return false;
     }
     return isSizeConsistent(x.left) && isSizeConsistent(x.right);
   }
   // check that ranks are consistent
   private boolean isRankConsistent() {
     for (int i = 0; i < size(); i++) {
       if (i != rank(select(i))) {
         return false;
       }
     }
     for (Key key : keys()) {
       if (key.compareTo(select(rank(key))) != 0) {
         return false;
       }
     }
     return true;
   }
   // Does the tree have no red right links, and at most one (left)
   // red links in a row on any path?
   private boolean is23() {
     return is23(root);
   }
   private boolean is23(Node x) {
     if (x == null) {
       return true;
     }
     if (isRed(x.right)) {
       return false;
     }
     if (x != root && isRed(x) && isRed(x.left)){
       return false;
     }
     return is23(x.left) && is23(x.right);
   }
   // do all paths from root to leaf have same number of black edges?
   private boolean isBalanced() {
     int black = 0;   // number of black links on path from root to min
     Node x = root;
     while (x != null) {
       if (!isRed(x)) black++;
       x = x.left;
     }
     return isBalanced(root, black);
   }
   // does every path from the root to a leaf have the given number of black links?
   private boolean isBalanced(Node x, int black) {
     if (x == null) {
       return black == 0;
     }
     if (!isRed(x)) {
       black--;
     }
     return isBalanced(x.left, black) && isBalanced(x.right, black);
   }
   /**
   * Unit tests the RedBlackBST data type.
   */
   public static void main(String[] args) {
     RedBlackBST<string, integer=""> st = new RedBlackBST<string, integer="">();
     String data = "a b c d e f g h m n o p";
     Scanner sc = new Scanner(data);
     int i = 0;
     while (sc.hasNext()) {
      String key = sc.next();
      st.put(key, i);
      i++;
     }
     sc.close();
     for (String s : st.keys())
       System.out.println(s + " " + st.get(s));
     System.out.println();
     boolean result = st.check();
     System.out.println("check: " + result);
   }
 }

输出:

<code>a 0
b 1
c 2
d 3
e 4
f 5
g 6
h 7
m 8
n 9
o 10
p 11

check: true</code>

总结

以上就是本文关于java算法实现红黑树完整代码示例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:java集合中list的用法代码示例、Java微信支付之服务号支付代码示例、快速理解Java设计模式中的组合模式等,有什么问题可以随时留言,小编会及时回复大家的。感谢朋友们对本站的支持!

(0)

相关推荐

  • Java实现的最大匹配分词算法详解

    本文实例讲述了Java实现的最大匹配分词算法.分享给大家供大家参考,具体如下: 全文检索有两个重要的过程: 1分词 2倒排索引 我们先看分词算法 目前对中文分词有两个方向,其中一个是利用概率的思想对文章分词. 也就是如果两个字,一起出现的频率很高的话,我们可以假设这两个字是一个词.这里可以用一个公式衡量:M(A,B)=P(AB)/P(A)P(B),其中 A表示一个字,B表示一个字,P(AB)表示AB相邻出现的概率,P(A)表示A在这篇文章中的频度,P(B)表示B在这篇文章中的频度.用概率分词的好

  • Java 蒙特卡洛算法求圆周率近似值实例详解

    起源 [1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.]1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和 Nick Metropolis共同发明,

  • Java实现的求逆矩阵算法示例

    本文实例讲述了Java实现的求逆矩阵算法.分享给大家供大家参考,具体如下: package demo; public class MatrixInverse { public static double Det(double [][]Matrix,int N)//计算n阶行列式(N=n-1) { int T0; int T1; int T2; double Num; int Cha; double [][] B; if(N>0) { Cha=0; B=new double[N][N]; Num=

  • 详解Java数据结构和算法(有序数组和二分查找)

    一.概述 有序数组中常常用到二分查找,能提高查找的速度.今天,我们用顺序查找和二分查找实现数组的增删改查. 二.有序数组的优缺点 优点:查找速度比无序数组快多了 缺点:插入时要按排序方式把后面的数据进行移动 三.有序数组和无序数组共同优缺点 删除数据时必须把后面的数据向前移动来填补删除项的漏洞 四.代码实现 public class OrderArray { private int nElemes; //记录数组长度 private long[] a; /** * 构造函数里面初始化数组 赋值默

  • Java实现的快速查找算法示例

    本文实例讲述了Java实现的快速查找算法.分享给大家供大家参考,具体如下: 快速查找算法,可以根据想要找的是第几个大的数,每次循环都能固定下来一个数在数组完整排完序之后的位置,每次循环都能定一个数的位置,如果当前固定的数的位置和用户要找的第几个数匹配,则就直接返回.例如我要找第二大的数,如果循环一次固定的数的下标是1,那就是当前需要找的数. 代码如下: // 快速查找算法 public static int quickSelect(int[] arr, int selectIndex) { in

  • Java实现分解任意输入数的质因数算法示例

    本文实例讲述了Java实现分解任意输入数的质因数算法.分享给大家供大家参考,具体如下: 分解任意输入数的质因数: 质因数概念:任何一个合数都可以写成几个质数相乘的形式.其中每个质数都是这个合数的因数,叫做这个合数的分解质因数.分解质因数只针对合数. 例如:12 = 2x2x3  18 = 2 x 3 x 3等等 下面来讲解一下这个算法的思路:第一:我们首先写一个求素数的函数:第二;我们做一个分解质因数的函数,然后在其中引入素数函数来判断是否为素数: 下面给出代码(仅供参考): package j

  • Java实现合并两个有序序列算法示例

    本文实例讲述了Java实现合并两个有序序列算法.分享给大家供大家参考,具体如下: 问题描述 输入:序列A<a0,a1,a2,...aq,aq+1,aq+2,...,ar>,其中a0<a1<...<aq,aq+1<aq+2<...<ar 输出:序列B<b0,b1,...,br>,其中b0<b1<...<br 算法思想 创建一个长度为r的数组R,将A中的序列看作是两个有序序列 B=A<a0,a1,a2,...,aq> C

  • java 实现MD5加密算法的简单实例

    java 实现MD5加密算法的简单实例 实现代码: import java.security.NoSuchAlgorithmException; public class MD5HashUtil { private MessageDigest md = null; private static MD5HashUtil md5 = null; private static final char[] hexChars ={'0','1','2','3','4','5','6','7','8','9'

  • java算法实现红黑树完整代码示例

    红黑树 定义 红黑树(英语:Red–black tree)是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组. 红黑树的另一种定义是含有红黑链接并满足下列条件的二叉查找树: 红链接均为左链接:没有任何一个结点同时和两条红链接相连:该树是完美黑色平衡的,即任意空链接到根结点的路径上的黑链接数量相同. 满足这样定义的红黑树和相应的2-3树是一一对应的. 旋转 旋转又分为左旋和右旋.通常左旋操作用于将一个向右倾斜的红色链接旋转为向左链接.对比操作前后,可以看出,该操作

  • Java加密解密和数字签名完整代码示例

    常见的加密算法 基本的单向加密算法: BASE64严格地说,属于编码格式,而非加密算法 MD5(MessageDigestalgorithm5,信息摘要算法) SHA(SecureHashAlgorithm,安全散列算法) HMAC(HashMessageAuthenticationCode,散列消息鉴别码) 复杂的对称加密(DES.PBE).非对称加密算法: DES(DataEncryptionStandard,数据加密算法) PBE(Password-basedencryption,基于密码

  • Java逃逸分析详解及代码示例

    概念引入 我们都知道,Java 创建的对象都是被分配到堆内存上,但是事实并不是这么绝对,通过对Java对象分配的过程分析,可以知道有两个地方会导致Java中创建出来的对象并一定分别在所认为的堆上.这两个点分别是Java中的逃逸分析和TLAB(Thread Local Allocation Buffer)线程私有的缓存区. 基本概念介绍 逃逸分析,是一种可以有效减少Java程序中同步负载和内存堆分配压力的跨函数全局数据流分析算法.通过逃逸分析,Java Hotspot编译器能够分析出一个新的对象的

  • Java实现生成Excel树形表头完整代码示例

    本文主要分享了Java实现生成Excel树形表头完整代码示例,没有什么好解释的,直接看看代码过程. 源数据格式: String[] targetNames = { "指标名称", "单位", "xx_yy1", "xx_yy2_zz1", "xx_yy2_zz2", "2017年5月_主营业务收入_累计", "2017年5月_主营业务收入_同比", "201

  • python实现协同过滤推荐算法完整代码示例

    测试数据 http://grouplens.org/datasets/movielens/ 协同过滤推荐算法主要分为: 1.基于用户.根据相邻用户,预测当前用户没有偏好的未涉及物品,计算得到一个排序的物品列表进行推荐 2.基于物品.如喜欢物品A的用户都喜欢物品C,那么可以知道物品A与物品C的相似度很高,而用户C喜欢物品A,那么可以推断出用户C也可能喜欢物品C. 不同的数据.不同的程序猿写出的协同过滤推荐算法不同,但其核心是一致的: 1.收集用户的偏好 1)不同行为分组 2)不同分组进行加权计算用

  • java通过JFrame做一个登录系统的界面完整代码示例

    在java的JFrame内通过创建匿名对象的方式做登录界面 package com.sxt; import java.awt.Container; import java.awt.GridLayout; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.JButton; import javax.swing.JFrame; import javax.swing.J

  • Java网络编程之TCP通信完整代码示例

    一.概述 Socket类是Java执行客户端TCP操作的基础类,这个类本身使用代码通过主机操作系统的本地TCP栈进行通信.Socket类的方法会建立和销毁连接,设置各种Socket选项. ServerSocket类是Java执行服务器端操作的基础类,该类运行于服务器,监听入站TCP连接,每个socket服务器监听服务器的某个端口,当远程主机的客户端尝试连接此端口时,服务器就被唤醒,并返回一个表示两台主机之间socket的正常Socket对象. 二.什么是TCP? TCP是一种面向连接的.可靠的.

  • Java中filter用法完整代码示例

    本文研究的主要是Java中filter过滤器的相关用法,具体实现代码如下. filter过滤器主要使用于前台向后台传递数据是的过滤操作.程度很简单就不说明了,直接给几个已经写好的代码: 一.使浏览器不缓存页面的过滤器 import javax.servlet.*; import javax.servlet.http.HttpServletResponse; import java.io.IOException; /** * 用于的使 Browser 不缓存页面的过滤器 */ public cla

  • Java编程redisson实现分布式锁代码示例

    最近由于工作很忙,很长时间没有更新博客了,今天为大家带来一篇有关Redisson实现分布式锁的文章,好了,不多说了,直接进入主题. 1. 可重入锁(Reentrant Lock) Redisson的分布式可重入锁RLock Java对象实现了java.util.concurrent.locks.Lock接口,同时还支持自动过期解锁. public void testReentrantLock(RedissonClient redisson){ RLock lock = redisson.getL

  • Java数据结构之红黑树的原理及实现

    目录 为什么要有红黑树这种数据结构 红黑树的简介 红黑树的基本操作之旋转 红黑树之添加元素 红黑树之删除结点 删除结点没有儿子的情况 删除结点仅有一个儿子结点的情况 删除结点有两个儿子结点 红黑树动态可视化网站 红黑树参考代码 为什么要有红黑树这种数据结构 我们知道ALV树是一种严格按照定义来实现的平衡二叉查找树,所以它查找的效率非常稳定,为O(log n),由于其严格按照左右子树高度差不大于1的规则,插入和删除操作中需要大量且复杂的操作来保持ALV树的平衡(左旋和右旋),因此ALV树适用于大量

随机推荐