python celery分布式任务队列的使用详解

一、Celery介绍和基本使用

Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理, 如果你的业务场景中需要用到异步任务,就可以考虑使用celery, 举几个实例场景中可用的例子:

你想对100台机器执行一条批量命令,可能会花很长时间 ,但你不想让你的程序等着结果返回,而是给你返回 一个任务ID,你过一段时间只需要拿着这个任务id就可以拿到任务执行结果, 在任务执行ing进行时,你可以继续做其它的事情。
你想做一个定时任务,比如每天检测一下你们所有客户的资料,如果发现今天 是客户的生日,就给他发个短信祝福

Celery 在执行任务时需要通过一个消息中间件来接收和发送任务消息,以及存储任务结果, 一般使用rabbitMQ or Redis,后面会讲

1.1 Celery有以下优点:

  • 简单:一单熟悉了celery的工作流程后,配置和使用还是比较简单的
  • 高可用:当任务执行失败或执行过程中发生连接中断,celery 会自动尝试重新执行任务
  • 快速:一个单进程的celery每分钟可处理上百万个任务
  • 灵活: 几乎celery的各个组件都可以被扩展及自定制

Celery基本工作流程图

1.2 Celery安装使用

Celery的默认broker是RabbitMQ, 仅需配置一行就可以

broker_url = 'amqp://guest:guest@localhost:5672//'

rabbitMQ 没装的话请装一下

使用Redis做broker也可以

安装redis组件

pip install -U "celery[redis]"

配置

Configuration is easy, just configure the location of your Redis database:

app.conf.broker_url = 'redis://localhost:6379/0'

Where the URL is in the format of:

redis://:password@hostname:port/db_number

all fields after the scheme are optional, and will default to localhost on port 6379, using database 0.

如果想获取每个任务的执行结果,还需要配置一下把任务结果存在哪

If you also want to store the state and return values of tasks in Redis, you should configure these settings:

app.conf.result_backend = 'redis://localhost:6379/0'

1. 3 开始使用Celery啦  

安装celery模块

pip install celery

创建一个celery application 用来定义你的任务列表

创建一个任务文件就叫tasks.py吧

from celery import Celery

app = Celery('tasks',
 broker='redis://localhost',
 backend='redis://localhost')

@app.task
def add(x,y):
 print("running...",x,y)
 return x+y

启动Celery Worker来开始监听并执行任务

celery -A tasks worker --loglevel=info

调用任务

再打开一个终端, 进行命令行模式,调用任务

from tasks import add
add.delay(4, 4) #

看你的worker终端会显示收到 一个任务,此时你想看任务结果的话,需要在调用 任务时 赋值个变量

result = add.delay(4, 4)

The ready() method returns whether the task has finished processing or not:

>>> result.ready()
False

You can wait for the result to complete, but this is rarely used since it turns the asynchronous call into a synchronous one:

>>> result.get(timeout=1)
8


In case the task raised an exception, get() will re-raise the exception, but you can override this by specifying the propagate argument:

>>> result.get(propagate=False)


If the task raised an exception you can also gain access to the original traceback:

>>> result.traceback
…

二、在项目中如何使用celery 

可以把celery配置成一个应用

目录格式如下

1 proj/__init__.py
2 /celery.py
3 /tasks.py

proj/celery.py内容

from __future__ import absolute_import, unicode_literals
from celery import Celery

app = Celery('proj',
 broker='amqp://',
 backend='amqp://',
 include=['proj.tasks'])

# Optional configuration, see the application user guide.
app.conf.update(
 result_expires=3600,
)

if __name__ == '__main__':
 app.start()

proj/tasks.py中的内容

from __future__ import absolute_import, unicode_literals
from .celery import app

@app.task
def add(x, y):
 return x + y

@app.task
def mul(x, y):
 return x * y

@app.task
def xsum(numbers):
 return sum(numbers)

启动worker

celery -A proj worker -l info #

输出

-------------- celery@Alexs-MacBook-Pro.local v4.0.2 (latentcall)
---- **** -----
--- * *** * -- Darwin-15.6.0-x86_64-i386-64bit 2017-01-26 21:50:24
-- * - **** ---
- ** ---------- [config]
- ** ---------- .> app: proj:0x103a020f0
- ** ---------- .> transport: redis://localhost:6379//
- ** ---------- .> results: redis://localhost/
- *** --- * --- .> concurrency: 8 (prefork)
-- ******* ---- .> task events: OFF (enable -E to monitor tasks in this worker)
--- ***** -----
 -------------- [queues]
 .> celery exchange=celery(direct) key=celery

后台启动worker

In the background

In production you'll want to run the worker in the background, this is described in detail in the daemonization tutorial.

The daemonization scripts uses the celery multi command to start one or more workers in the background:

$ celery multi start w1 -A proj -l info
celery multi v4.0.0 (latentcall)
> Starting nodes...
> w1.halcyon.local: OK

You can restart it too:

$ celery multi restart w1 -A proj -l info
celery multi v4.0.0 (latentcall)
> Stopping nodes...
> w1.halcyon.local: TERM -> 64024
> Waiting for 1 node.....
> w1.halcyon.local: OK
> Restarting node w1.halcyon.local: OK
celery multi v4.0.0 (latentcall)
> Stopping nodes...
> w1.halcyon.local: TERM -> 64052

or stop it:

$ celery multi stop w1 -A proj -l info 

The stop command is asynchronous so it won't wait for the worker to shutdown. You'll probably want to use the stopwait command instead, this ensures all currently executing tasks is completed before exiting:

$ celery multi stopwait w1 -A proj -l info  

三、Celery 定时任务

celery支持定时任务,设定好任务的执行时间,celery就会定时自动帮你执行, 这个定时任务模块叫celery beat

写一个脚本 叫periodic_task.py

from celery import Celery
from celery.schedules import crontab

app = Celery()

@app.on_after_configure.connect
def setup_periodic_tasks(sender, **kwargs):
 # Calls test('hello') every 10 seconds.
 sender.add_periodic_task(10.0, test.s('hello'), name='add every 10')

 # Calls test('world') every 30 seconds
 sender.add_periodic_task(30.0, test.s('world'), expires=10)

 # Executes every Monday morning at 7:30 a.m.
 sender.add_periodic_task(
 crontab(hour=7, minute=30, day_of_week=1),
 test.s('Happy Mondays!'),
 )

@app.task
def test(arg):
 print(arg)

add_periodic_task 会添加一条定时任务

上面是通过调用函数添加定时任务,也可以像写配置文件 一样的形式添加, 下面是每30s执行的任务

app.conf.beat_schedule = {
 'add-every-30-seconds': {
 'task': 'tasks.add',
 'schedule': 30.0,
 'args': (16, 16)
 },
}
app.conf.timezone = 'UTC'

任务添加好了,需要让celery单独启动一个进程来定时发起这些任务, 注意, 这里是发起任务,不是执行,这个进程只会不断的去检查你的任务计划, 每发现有任务需要执行了,就发起一个任务调用消息,交给celery worker去执行

启动任务调度器 celery beat

celery -A periodic_task beat

输出like below

celery beat v4.0.2 (latentcall) is starting.
__ - ... __ - _
LocalTime -> 2017-02-08 18:39:31
Configuration ->
 . broker -> redis://localhost:6379//
 . loader -> celery.loaders.app.AppLoader
 . scheduler -> celery.beat.PersistentScheduler
 . db -> celerybeat-schedule
 . logfile -> [stderr]@%WARNING
 . maxinterval -> 5.00 minutes (300s

此时还差一步,就是还需要启动一个worker,负责执行celery beat发起的任务

启动celery worker来执行任务

$ celery -A periodic_task worker

 -------------- celery@Alexs-MacBook-Pro.local v4.0.2 (latentcall)
---- **** -----
--- * *** * -- Darwin-15.6.0-x86_64-i386-64bit 2017-02-08 18:42:08
-- * - **** ---
- ** ---------- [config]
- ** ---------- .> app: tasks:0x104d420b8
- ** ---------- .> transport: redis://localhost:6379//
- ** ---------- .> results: redis://localhost/
- *** --- * --- .> concurrency: 8 (prefork)
-- ******* ---- .> task events: OFF (enable -E to monitor tasks in this worker)
--- ***** -----
 -------------- [queues]
 .> celery exchange=celery(direct) key=celery

好啦,此时观察worker的输出,是不是每隔一小会,就会执行一次定时任务呢!

注意:Beat needs to store the last run times of the tasks in a local database file (named celerybeat-schedule by default), so it needs access to write in the current directory, or alternatively you can specify a custom location for this file:

celery -A periodic_task beat -s /home/celery/var/run/celerybeat-schedule

更复杂的定时配置  

上面的定时任务比较简单,只是每多少s执行一个任务,但如果你想要每周一三五的早上8点给你发邮件怎么办呢?哈,其实也简单,用crontab功能,跟linux自带的crontab功能是一样的,可以个性化定制任务执行时间

from celery.schedules import crontab

app.conf.beat_schedule = {
 # Executes every Monday morning at 7:30 a.m.
 'add-every-monday-morning': {
 'task': 'tasks.add',
 'schedule': crontab(hour=7, minute=30, day_of_week=1),
 'args': (16, 16),
 },
}

上面的这条意思是每周1的早上7.30执行tasks.add任务

还有更多定时配置方式如下:

Example Meaning
crontab() Execute every minute.
crontab(minute=0, hour=0) Execute daily at midnight.
crontab(minute=0, hour='*/3') Execute every three hours: midnight, 3am, 6am, 9am, noon, 3pm, 6pm, 9pm.
crontab(minute=0,
hour='0,3,6,9,12,15,18,21')
Same as previous.
crontab(minute='*/15') Execute every 15 minutes.
crontab(day_of_week='sunday') Execute every minute (!) at Sundays.
crontab(minute='*',
hour='*',day_of_week='sun')
Same as previous.
crontab(minute='*/10',
hour='3,17,22',day_of_week='thu,fri')
Execute every ten minutes, but only between 3-4 am, 5-6 pm, and 10-11 pm on Thursdays or Fridays.
crontab(minute=0,hour='*/2,*/3') Execute every even hour, and every hour divisible by three. This means: at every hour except: 1am, 5am, 7am, 11am, 1pm, 5pm, 7pm, 11pm
crontab(minute=0, hour='*/5') Execute hour divisible by 5. This means that it is triggered at 3pm, not 5pm (since 3pm equals the 24-hour clock value of “15”, which is divisible by 5).
crontab(minute=0, hour='*/3,8-17') Execute every hour divisible by 3, and every hour during office hours (8am-5pm).
crontab(0, 0,day_of_month='2') Execute on the second day of every month.
crontab(0, 0,
day_of_month='2-30/3')
Execute on every even numbered day.
crontab(0, 0,
day_of_month='1-7,15-21')
Execute on the first and third weeks of the month.
crontab(0, 0,day_of_month='11',
month_of_year='5')
Execute on the eleventh of May every year.
crontab(0, 0,
month_of_year='*/3')
Execute on the first month of every quarter.

上面能满足你绝大多数定时任务需求了,甚至还能根据潮起潮落来配置定时任务

四、最佳实践之与django结合

django 可以轻松跟celery结合实现异步任务,只需简单配置即可

If you have a modern Django project layout like:

- proj/
 - proj/__init__.py
 - proj/settings.py
 - proj/urls.py
- manage.py

then the recommended way is to create a new proj/proj/celery.py module that defines the Celery instance:

file: proj/proj/celery.py  

from __future__ import absolute_import, unicode_literals
import os
from celery import Celery

# set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')

app = Celery('proj')

# Using a string here means the worker don't have to serialize
# the configuration object to child processes.
# - namespace='CELERY' means all celery-related configuration keys
# should have a `CELERY_` prefix.
app.config_from_object('django.conf:settings', namespace='CELERY')

# Load task modules from all registered Django app configs.
app.autodiscover_tasks()

@app.task(bind=True)
def debug_task(self):
 print('Request: {0!r}'.format(self.request))

Then you need to import this app in your proj/proj/__init__.py module. This ensures that the app is loaded when Django starts so that the @shared_task decorator (mentioned later) will use it:  

proj/proj/__init__.py:

from __future__ import absolute_import, unicode_literals

# This will make sure the app is always imported when
# Django starts so that shared_task will use this app.
from .celery import app as celery_app

__all__ = ['celery_app']

Note that this example project layout is suitable for larger projects, for simple projects you may use a single contained module that defines both the app and tasks, like in the First Steps with Celery tutorial.  

Let's break down what happens in the first module, first we import absolute imports from the future, so that our celery.py module won't clash with the library:

from __future__ import absolute_import  

Then we set the default DJANGO_SETTINGS_MODULE environment variable for the celery command-line program:

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')              

You don't need this line, but it saves you from always passing in the settings module to the celery program. It must always come before creating the app instances, as is what we do next:

app = Celery('proj')  

This is our instance of the library.

We also add the Django settings module as a configuration source for Celery. This means that you don't have to use multiple configuration files, and instead configure Celery directly from the Django settings; but you can also separate them if wanted.

The uppercase name-space means that all Celery configuration options must be specified in uppercase instead of lowercase, and start with CELERY_, so for example the task_always_eager` setting becomes CELERY_TASK_ALWAYS_EAGER, and the broker_url setting becomes CELERY_BROKER_URL.

You can pass the object directly here, but using a string is better since then the worker doesn't have to serialize the object.

app.config_from_object('django.conf:settings', namespace='CELERY')  

Next, a common practice for reusable apps is to define all tasks in a separate tasks.pymodule, and Celery does have a way to auto-discover these modules:

app.autodiscover_tasks() 

With the line above Celery will automatically discover tasks from all of your installed apps, following the tasks.py convention:

- app1/

 - tasks.py
 - models.py
- app2/
 - tasks.py
 - models.py

Finally, the debug_task example is a task that dumps its own request information. This is using the new bind=True task option introduced in Celery 3.1 to easily refer to the current task instance.

然后在具体的app里的tasks.py里写你的任务

# Create your tasks here
from __future__ import absolute_import, unicode_literals
from celery import shared_task

@shared_task
def add(x, y):
 return x + y

@shared_task
def mul(x, y):
 return x * y

@shared_task
def xsum(numbers):
 return sum(numbers)

在你的django views里调用celery task

from django.shortcuts import render,HttpResponse

# Create your views here.

from bernard import tasks

def task_test(request):

 res = tasks.add.delay(228,24)
 print("start running task")
 print("async task res",res.get() )

 return HttpResponse('res %s'%res.get())

五、在django中使用计划任务功能  

There's the django-celery-beat extension that stores the schedule in the Django database, and presents a convenientadmin interface to manage periodic tasks at runtime.

To install and use this extension:

1.Use pip to install the package:

$ pip install django-celery-beat 

2.Add the django_celery_beat module to INSTALLED_APPS in your Django project' settings.py:

INSTALLED_APPS = (
...,
'django_celery_beat',
)

Note that there is no dash in the module name, only underscores.

3.Apply Django database migrations so that the necessary tables are created:

$ python manage.py migrate             

4.Start the celery beat service using the django scheduler:

$ celery -A proj beat -l info -S django

5.Visit the Django-Admin interface to set up some periodic tasks.

在admin页面里,有3张表

配置完长这样

此时启动你的celery beat 和worker,会发现每隔2分钟,beat会发起一个任务消息让worker执行scp_task任务

注意,经测试,每添加或修改一个任务,celery beat都需要重启一次,要不然新的配置不会被celery beat进程读到

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python环境下安装使用异步任务队列包Celery的基础教程

    1.简介 celery(芹菜)是一个异步任务队列/基于分布式消息传递的作业队列.它侧重于实时操作,但对调度支持也很好. celery用于生产系统每天处理数以百万计的任务. celery是用Python编写的,但该协议可以在任何语言实现.它也可以与其他语言通过webhooks实现. 建议的消息代理RabbitMQ的,但提供有限支持Redis, Beanstalk, MongoDB, CouchDB, ,和数据库(使用SQLAlchemy的或Django的 ORM) . celery是易于集成Dja

  • django celery redis使用具体实践

    环境准备 python3.5.4 windows redis pip install celery pip install redis windows下启动redirs server redis-server.exe redis.windows.conf celery配置 项目的settings.py文件修改: # celery 设置 # celery中间人 redis://redis服务所在的ip地址:端口/数据库号 BROKER_URL = 'redis://127.0.0.1:6379/0

  • 详解django+django-celery+celery的整合实战

    本篇文章主要是由于计划使用django写一个计划任务出来,可以定时的轮换值班人员名称或者定时执行脚本等功能,百度无数坑之后,终于可以凑合把这套东西部署上.本人英文不好,英文好或者希望深入学习或使用的人,建议去参考官方文档,而且本篇的记录不一定正确,仅仅实现crontab 的功能而已. 希望深入学习的人可以参考 http://docs.jinkan.org/docs/celery/ . 首先简单介绍一下,Celery 是一个强大的分布式任务队列,它可以让任务的执行完全脱离主程序,甚至可以被分配到其

  • python Celery定时任务的示例

    本文介绍了python Celery定时任务的示例,分享给大家,具体如下: 配置 启用Celery的定时任务需要设置CELERYBEAT_SCHEDULE . Celery的定时任务都由celery beat来进行调度.celery beat默认按照settings.py之中的时区时间来调度定时任务. 创建定时任务 一种创建定时任务的方式是配置CELERYBEAT_SCHEDULE: #每30秒调用task.add from datetime import timedelta CELERYBEA

  • Python并行分布式框架Celery详解

    Celery 简介 除了redis,还可以使用另外一个神器---Celery.Celery是一个异步任务的调度工具. Celery 是 Distributed Task Queue,分布式任务队列,分布式决定了可以有多个 worker 的存在,队列表示其是异步操作,即存在一个产生任务提出需求的工头,和一群等着被分配工作的码农. 在 Python 中定义 Celery 的时候,我们要引入 Broker,中文翻译过来就是"中间人"的意思,在这里 Broker 起到一个中间人的角色.在工头提

  • 在RedHat系Linux上部署Python的Celery框架的教程

    Celery (芹菜)是基于Python开发的分布式任务队列.它支持使用任务队列的方式在分布的机器/进程/线程上执行任务调度. 架构设计 Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成. 1. 消息中间件 Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成.包括,RabbitMQ, Redis, MongoDB (experimental), Amazon

  • django+xadmin+djcelery实现后台管理定时任务

    继上一篇中间表的数据是动态的,图表展示的数据才比较准确.这里用到一个新的模块Djcelery,安装配置步骤如下: 1.安装 redis==2.10.6 celery==3.1.23 django-celery==3.1.17 flower==0.9.2 supervisor==3.3.4 flower用于监控定时任务,supervisor管理进程,可选 2.配置 settings.py中添加以下几行: #最顶头加上 from __future__ import absolute_import #

  • python celery分布式任务队列的使用详解

    一.Celery介绍和基本使用 Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理, 如果你的业务场景中需要用到异步任务,就可以考虑使用celery, 举几个实例场景中可用的例子: 你想对100台机器执行一条批量命令,可能会花很长时间 ,但你不想让你的程序等着结果返回,而是给你返回 一个任务ID,你过一段时间只需要拿着这个任务id就可以拿到任务执行结果, 在任务执行ing进行时,你可以继续做其它的事情. 你想做一个定时任务,比如每天检测一下你们

  • python周期任务调度工具Schedule使用详解

    目录 1.准备 2.基本使用 参数传递 获取目前所有的作业 取消所有作业 标签功能 设定作业截止时间 3.高级使用 装饰器安排作业 并行执行 日志记录 异常处理 如果你想周期性地执行某个 Python 脚本,最出名的选择应该是 Crontab 脚本,但是 Crontab 具有以下缺点: 1.不方便执行秒级任务. 2.当需要执行的定时任务有上百个的时候,Crontab 的管理就会特别不方便. 还有一个选择是 Celery,但是 Celery 的配置比较麻烦,如果你只是需要一个轻量级的调度工具,Ce

  • 基于python中的TCP及UDP(详解)

    python中是通过套接字即socket来实现UDP及TCP通信的.有两种套接字面向连接的及无连接的,也就是TCP套接字及UDP套接字. TCP通信模型 创建TCP服务器 伪代码: ss = socket() # 创建服务器套接字 ss.bind() # 套接字与地址绑定 ss.listen() # 监听连接 inf_loop: # 服务器无限循环 cs = ss.accept() # 接受客户端连接 comm_loop: # 通信循环 cs.recv()/cs.send() # 对话(接收/发

  • python中模块的__all__属性详解

    python模块中的__all__属性,可用于模块导入时限制,如: from module import * 此时被导入模块若定义了__all__属性,则只有__all__内指定的属性.方法.类可被导入. 若没定义,则导入模块内的所有公有属性,方法和类 # kk.py class A(): def __init__(self,name,age): self.name=name self.age=age class B(): def __init__(self,name,id): self.nam

  • Python 通过URL打开图片实例详解

    Python 通过URL打开图片实例详解 不论是用OpenCV还是PIL,skimage等库,在之前做图像处理的时候,几乎都是读取本地的图片.最近尝试爬虫爬取图片,在保存之前,我希望能先快速浏览一遍图片,然后有选择性的保存.这里就需要从url读取图片了.查了很多资料,发现有这么几种方法,这里做个记录. 本文用到的图片URL如下: img_src = 'http://wx2.sinaimg.cn/mw690/ac38503ely1fesz8m0ov6j20qo140dix.jpg' 1.用Open

  • python算法演练_One Rule 算法(详解)

    这样某一个特征只有0和1两种取值,数据集有三个类别.当取0的时候,假如类别A有20个这样的个体,类别B有60个这样的个体,类别C有20个这样的个体.所以,这个特征为0时,最有可能的是类别B,但是,还是有40个个体不在B类别中,所以,将这个特征为0分到类别B中的错误率是40%.然后,将所有的特征统计完,计算所有的特征错误率,再选择错误率最低的特征作为唯一的分类准则--这就是OneR. 现在用代码来实现算法. # OneR算法实现 import numpy as np from sklearn.da

  • Python命令启动Web服务器实例详解

    Python命令启动Web服务器实例详解 利用Python自带的包可以建立简单的web服务器.在DOS里cd到准备做服务器根目录的路径下,输入命令: python -m Web服务器模块 [端口号,默认8000] 例如: python -m SimpleHTTPServer 8080 然后就可以在浏览器中输入 http://localhost:端口号/路径 来访问服务器资源. 例如: http://localhost:8080/index.htm(当然index.htm文件得自己创建) 其他机器

  • Python爬虫爬验证码实现功能详解

    主要实现功能: - 登陆网页 - 动态等待网页加载 - 验证码下载 很早就有一个想法,就是自动按照脚本执行一个功能,节省大量的人力--个人比较懒.花了几天写了写,本着想完成验证码的识别,从根本上解决问题,只是难度太高,识别的准确率又太低,计划再次告一段落. 希望这次经历可以与大家进行分享和交流. Python打开浏览器 相比与自带的urllib2模块,操作比较麻烦,针对于一部分网页还需要对cookie进行保存,很不方便.于是,我这里使用的是Python2.7下的selenium模块进行网页上的操

  • python 二分查找和快速排序实例详解

    思想简单,细节颇多:本以为很简单的两个小程序,写起来发现bug频出,留此纪念. #usr/bin/env python def binary_search(lst,t): low=0 height=len(lst)-1 quicksort(lst,0,height) print lst while low<=height: mid = (low+height)/2 if lst[mid] == t: return lst[mid] elif lst[mid]>t: height=mid-1 e

  • Python探索之URL Dispatcher实例详解

    URL dispatcher简单点理解就是根据URL,将请求分发到相应的方法中去处理,它是对URL和View的一个映射,它的实现其实也很简单,就是一个正则匹配的过程,事先定义好正则表达式和该正则表达式对应的view方法,如果请求的URL符合这个正则表达式,那么就分发这个请求到这个view方法中. 有了这个base,我们先抛出几个问题,提前思考一下: 这个映射定义在哪里?当映射很多时,如果有效的组织? URL中的参数怎么获取,怎么传给view方法? 如何在view或者是template中反解出UR

随机推荐