OpenCV 轮廓检测的实现方法

轮廓概述

  1. 轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。
  2. 为了更加准确,要使用二值化图像。在寻找轮廓之前,要进行阈值化处理或者 Canny 边界检测。
  3. 查找轮廓的函数会修改原始图像。如果你在找到轮廓之后还想使用原始图像的话,你应该将原始图像存储到其他变量中。
  4. 在 OpenCV 中,查找轮廓就像在黑色背景中超白色物体,要找的物体应该是白色而背景应该是黑色。

轮廓检测的作用:

1.可以检测图图像或者视频中物体的轮廓
2.计算多边形边界,形状逼近和计算感兴趣区域

先看一个较为简单的轮廓检测:

import cv2
import numpy as np
# 创建一个200*200的黑色空白图像
img = np.zeros((200, 200), dtype=np.uint8)
# 利用numpy数组在切片上赋值的功能放置一个白色方块
img[50:150, 50:150] = 255

# 对图像进行二值化操作
# threshold(src, thresh, maxval, type, dst=None)
# src是输入数组,thresh是阈值的具体值,maxval是type取THRESH_BINARY或者THRESH_BINARY_INV时的最大值
# type有5种类型,这里取0: THRESH_BINARY ,当前点值大于阈值时,取maxval,也就是前一个参数,否则设为0
# 该函数第一个返回值是阈值的值,第二个是阈值化后的图像
ret, thresh = cv2.threshold(img, 127, 255, 0)

# findContours()有三个参数:输入图像,层次类型和轮廓逼近方法
# 该函数会修改原图像,建议使用img.copy()作为输入
# 由函数返回的层次树很重要,cv2.RETR_TREE会得到图像中轮廓的整体层次结构,以此来建立轮廓之间的‘关系'。
# 如果只想得到最外面的轮廓,可以使用cv2.RETE_EXTERNAL。这样可以消除轮廓中其他的轮廓,也就是最大的集合
# 该函数有三个返回值:修改后的图像,图像的轮廓,它们的层次
image, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

color = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img = cv2.drawContours(color, contours, -1, (0, 255, 0), 2)
cv2.imshow("contours", color)
cv2.waitKey()
cv2.destroyAllWindows()

上面是找到一个正方形的轮廓,下面看如何找到不规则的多边形轮廓:

import cv2
import numpy as np

# pyrDown():brief Blurs an image and downsamples it.
# 将图像高斯平滑,然后进行降采样
img = cv2.pyrDown(cv2.imread("hammer.jpg", cv2.IMREAD_UNCHANGED))
# 依然是二值化操作
ret, thresh = cv2.threshold(cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY), 127, 255, cv2.THRESH_BINARY)
# 计算图像的轮廓
image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

for c in contours:
  # find bounding box coordinates
  # 先计算出一个简单的边界狂,也就是一个矩形啦
  # 就是将轮廓信息转换为(x,y)坐标,并加上矩形的高度和宽度
  x, y, w, h = cv2.boundingRect(c)
  # 画出该矩形
  cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)

  # find minimum area
  # 然后计算包围目标的最小矩形区域
  # 这里先计算出最小矩形区域,然后计算区域的顶点,此时顶点坐标是浮点型,但是像素坐标是整数
  # 需要将浮点型转换成矩形
  rect = cv2.minAreaRect(c)
  box = cv2.boxPoints(rect)
  box = np.int0(box)
  # draw contours
  # 画出最小矩形
  # drawContours()也会修改源图像
  # 第二个参数保存轮廓的数组,也就是保存着很多轮廓
  # 第三个参数是要绘制的轮廓数组的索引:-1是绘制所有的轮廓,否则只绘制[box]中指定的轮廓
  # 颜色和thickness(密度,就是粗细)放在最后两个参数
  cv2.drawContours(img, [box], 0, (0, 0, 255), 3)

  # calculate center and radius of minimum enclosing circle
  # 最后检查的边界轮廓为最小闭圆
  # minEnclosingCircle()会返回一个二元数组,第一个是圆心坐标组成的元祖,第二个元素是元的半径
  (x, y), radius = cv2.minEnclosingCircle(c)
  # cast to integers
  center = (int(x), int(y))
  radius = int(radius)
  # draw the circle
  img = cv2.circle(img, center, radius, (255, 0, 0), 3)

# 绘制轮廓
cv2.drawContours(img, contours, -1, (255, 0, 0), 1)
cv2.imshow("contours", img)

cv2.waitKey()
cv2.destroyAllWindows()

凸轮廓与Douglas-Peucker算法

import cv2
import numpy as np

img = cv2.pyrDown(cv2.imread("hammer.jpg", cv2.IMREAD_UNCHANGED))

ret, thresh = cv2.threshold(cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY), 127, 255, cv2.THRESH_BINARY)
# 创建与源图像一样大小的矩阵
black = cv2.cvtColor(np.zeros((img.shape[1], img.shape[0]), dtype=np.uint8), cv2.COLOR_GRAY2BGR)

image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

for cnt in contours:
  # 得到轮廓的周长作为参考
  epsilon = 0.01 * cv2.arcLength(cnt,True)
  # approxPolyDP()用来计算近似的多边形框。有三个参数
  # cnt为轮廓,epsilon为ε——表示源轮廓与近似多边形的最大差值,越小越接近
  # 第三个是布尔标记,用来表示这个多边形是否闭合
  approx = cv2.approxPolyDP(cnt,epsilon,True)
  # convexHull()可以从轮廓获取凸形状
  hull = cv2.convexHull(cnt)
  # 源图像轮廓-绿色
  cv2.drawContours(black, [cnt], -1, (0, 255, 0), 2)
  # 近似多边形-蓝色
  cv2.drawContours(black, [approx], -1, (255, 0, 0), 2)
  # 凸包-红色
  cv2.drawContours(black, [hull], -1, (0, 0, 255), 2)

cv2.imshow("hull", black)
cv2.waitKey()
cv2.destroyAllWindows()

本来也有疑问,有了一个精确的轮廓,为什么还需要一个近似的多边形?

书中给出答案,近似多边形是由一组直线构成,这样可以便于后续的操作和处理。

想来也是,直线构成的区域总是比无限个曲率的曲线构成的区域方便处理。

直线和圆检测

直线检测可以通过HoughLinesP函数完成,HoughLinesP是标准Hough变换经过优化,使用概率Hough变换。

import cv2
import numpy as np

img = cv2.imread('lines.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,120)
# 最小直线长度,小于该长度会被消除
minLineLength = 20
# 最大线段间隙,一条直线的间隙长度大于这个值会被认为是两条直线
maxLineGap = 5
# HoughLinesP()会接受一个由Canny边缘检测滤波器处理过的单通道二值图像
# 不一定需要Canny滤波器,但是输入是去噪且只有边缘的图像,效果会很好
# 第一个参数是输入图像
# 第二、第三个参数是线段的几何表示rho和theta,一般取1和np.pi/180
# 第四个参数是阈值,低于该阈值的直线会被忽略
# 第五第六已经解释
lines = cv2.HoughLinesP(edges,1,np.pi/180,20,minLineLength,maxLineGap)
for x1,y1,x2,y2 in lines[0]:
  cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)

cv2.imshow("edges", edges)
cv2.imshow("lines", img)
cv2.waitKey()
cv2.destroyAllWindows()

圆检测可以通过HoughCircles函数检测。

import cv2
import numpy as np

planets = cv2.imread('planet_glow.jpg')
gray_img = cv2.cvtColor(planets, cv2.COLOR_BGR2GRAY)
img = cv2.medianBlur(gray_img, 5)
cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

# 与直线检测类似,需要圆心距的最小距离和圆的最小以及最大半径
circles = cv2.HoughCircles(img,cv2.HOUGH_GRADIENT,1,120,param1=100,param2=30,minRadius=0,maxRadius=0)

circles = np.uint16(np.around(circles))

for i in circles[0,:]:
  # draw the outer circle
  cv2.circle(planets,(i[0],i[1]),i[2],(0,255,0),2)
  # draw the center of the circle
  cv2.circle(planets,(i[0],i[1]),2,(0,0,255),3)

cv2.imwrite("planets_circles.jpg", planets)
cv2.imshow("HoughCirlces", planets)
cv2.waitKey()
cv2.destroyAllWindows()

有一个问题,该方法检测出来的第二行的第一个星球的圆检测与书中不一样。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • OpenCV实现图像轮廓检测以及外接矩形

    前两篇博文分别介绍了图像的边缘检测和轮廓检测,本文接着介绍图像的轮廓检测和轮廓外接矩形: 一.代码部分: // extract_contours.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<cv.h> #include<highgui.h> using namespace cv; using namespace std; int _tmain(int argc, _TCHAR* argv[]) { /

  • OpenCV-Python实现轮廓检测实例分析

    相比C++而言,Python适合做原型.本系列的文章介绍如何在Python中用OpenCV图形库,以及与C++调用相应OpenCV函数的不同之处.这篇文章介绍在Python中使用OpenCV检测并绘制轮廓. 提示: 转载请详细注明原作者及出处,谢谢! 本文介绍在OpenCV-Python中检测并绘制轮廓的方法. 本文不介详细的理论知识,读者可从其他资料中获取相应的背景知识.笔者推荐清华大学出版社的<图像处理与计算机视觉算法及应用(第2版)>. 轮廓检测 轮廓检测也是图像处理中经常用到的.Ope

  • python+opencv轮廓检测代码解析

    首先大家可以对OpenCV有个初步的了解,可以参考:简单了解OpenCV 轮廓(Contours),指的是有相同颜色或者密度,连接所有连续点的一条曲线.检测轮廓的工作对形状分析和物体检测与识别都非常有用. 在轮廓检测之前,首先要对图片进行二值化或者Canny边缘检测.在OpenCV中,寻找的物体是白色的,而背景必须是黑色的,因此图片预处理时必须保证这一点. import cv2 #读入图片 img = cv2.imread("1.png") # 必须先转化成灰度图 gray = cv2

  • OpenCV 轮廓检测的实现方法

    轮廓概述 轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度.轮廓在形状分析和物体的检测和识别中很有用. 为了更加准确,要使用二值化图像.在寻找轮廓之前,要进行阈值化处理或者 Canny 边界检测. 查找轮廓的函数会修改原始图像.如果你在找到轮廓之后还想使用原始图像的话,你应该将原始图像存储到其他变量中. 在 OpenCV 中,查找轮廓就像在黑色背景中超白色物体,要找的物体应该是白色而背景应该是黑色. 轮廓检测的作用: 1.可以检测图图像或者视频中物体的轮廓 2.计算

  • OpenCV轮廓检测之boundingRect绘制矩形边框

    目录 函数原型 参数说明 测试代码 测试效果 补充 函数原型 cv::Rect boundingRect( InputArray array ); 参数说明 输入:InputArray类型的array,输入灰度图像或二维点集. 输出:Rect类型的矩形信息,包括矩形尺寸和位置. 测试代码 #include <iostream> #include <time.h> #include <opencv2/opencv.hpp> using namespace std; usi

  • opencv python 图像轮廓/检测轮廓/绘制轮廓的方法

    图像的轮廓检测,如计算多边形外界.形状毕竟.计算感兴趣区域等. Contours : Getting Started 轮廓 简单地解释为连接所有连续点(沿着边界)的曲线,具有相同的颜色或强度. 轮廓是形状分析和物体检测和识别的有用工具 NOTE 为获得更好的准确性,请使用二值图,在找到轮廓之前,应用阈值法或canny边缘检测 从OpenCV 3.2开始,findContours()不再修改源图像,而是将修改后的图像作为三个返回参数中的第一个返回 在OpenCV中,查找轮廓是从黑色背景中查找白色对

  • Python使用Opencv实现边缘检测以及轮廓检测的实现

    边缘检测 Canny边缘检测器是一种被广泛使用的算法,并被认为是边缘检测最优的算法,该方法使用了比高斯差分算法更复杂的技巧,如多向灰度梯度和滞后阈值化. Canny边缘检测器算法基本步骤: 平滑图像:通过使用合适的模糊半径执行高斯模糊来减少图像内的噪声. 计算图像的梯度:这里计算图像的梯度,并将梯度分类为垂直.水平和斜对角.这一步的输出用于在下一步中计算真正的边缘. 非最大值抑制:利用上一步计算出来的梯度方向,检测某一像素在梯度的正方向和负方向上是否是局部最大值,如果是,则抑制该像素(像素不属于

  • opencv实现图形轮廓检测

    要想实现轮廓检测,首先我们需要对待检测的图像进行图像处理: 图像灰度化.高斯滤波.Canny 边缘检测.边缘检测放大处理.提取轮廓. 一.实现简单的全图型检测 即只要将drawContours第三个参数设置为-1 既能实现图像的全图型检测. 程序: #include <iostream> #include <opencv2/highgui.hpp> // 说是说gui 具体什么gui 不清楚 #include <opencv2/imgcodecs.hpp> // 图像头

  • OpenCV实现轮廓检测与绘制

    图像的轮廓不仅能够提供物体的边缘,而且还能提供物体边缘之间的层次关系以及拓扑关系. 带有结构关系的边缘检测,这种结构关系可以表明图像中连通域或者某些区域之间的关系. 图为一个具有4个不连通边缘的二值化图像,由外到内依次为0号.1号.2号.3号条边缘.为了描述不同轮廓之间的结构关系,定义由外到内的轮廓级别越来越低,也就是高一层级的轮廓包围着较低层级的轮廓,被同一个轮廓包围的多个不互相包含的轮廓是同一层级轮廓.例如在图中,0号轮廓层级比1号和第2号轮廓的层及都要高,2号轮廓包围着3号轮廓,因此2号轮

  • python opencv人脸检测提取及保存方法

    注意这里提取到的人脸图片的保存地址要改成自己要保存的地址 opencv人脸的检测模型的路径也要更改为自己安装的opencv的人脸检测模型的路径 import cv2 save_path = 'F:\\face_photo_save\\chenym\\' cascade = cv2.CascadeClassifier("D:\\opencv249\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt_tree.xml&q

  • OpenCV 轮廓周围绘制矩形框和圆形框的方法

    轮廓周围绘制介绍 没什么概念,就是给得出来的轮廓绘制周围图形,例如下图给左侧得出的轮廓去绘图得到右侧图像: 相关API 减少多边形轮廓点数:approxPolyDP 函数作用:基于RDP算法实现,目的是减少多边形轮廓点数 函数原型: //减少多边形轮廓点数 approxPolyDP( InputArray curve, // 一般是由图像的轮廓点组成的点集 Mat(vector) OutputArray approxCurve, // 表示输出的多边形点集 double epsilon, //

随机推荐