Java完全二叉树的创建与四种遍历方法分析

本文实例讲述了Java完全二叉树的创建与四种遍历方法。分享给大家供大家参考,具体如下:

有如下的一颗完全二叉树:

先序遍历结果应该为:1  2  4  5  3  6  7
中序遍历结果应该为:4  2  5  1  6  3  7
后序遍历结果应该为:4  5  2  6  7  3  1
层序遍历结果应该为:1  2  3  4  5  6  7

二叉树的先序遍历、中序遍历、后序遍历其实都是一样的,都是执行递归操作。

我这记录一下层次遍历吧:层次遍历需要用到队列,先入队在出队,每次出队的元素检查是其是否有左右孩子,有则将其加入队列,由于利用队列的先进先出原理,进行层次遍历。

下面记录下完整代码(java实现),包括几种遍历方法:

import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.List;
import java.util.Queue;
/**
 * 定义二叉树节点元素
 * @author bubble
 *
 */
class Node {
  public Node leftchild;
  public Node rightchild;
  public int data;
  public Node(int data) {
    this.data = data;
  }
}
public class TestBinTree {
  /**
   * 将一个arry数组构建成一个完全二叉树
   * @param arr 需要构建的数组
   * @return 二叉树的根节点
   */
  public Node initBinTree(int[] arr) {
    if(arr.length == 1) {
      return new Node(arr[0]);
    }
    List<Node> nodeList = new ArrayList<>();
    for(int i = 0; i < arr.length; i++) {
      nodeList.add(new Node(arr[i]));
    }
    int temp = 0;
    while(temp <= (arr.length - 2) / 2) { //注意这里,数组的下标是从零开始的
      if(2 * temp + 1 < arr.length)
        nodeList.get(temp).leftchild = nodeList.get(2 * temp + 1);
      if(2 * temp + 2 < arr.length)
        nodeList.get(temp).rightchild = nodeList.get(2 * temp + 2);
      temp++;
    }
    return nodeList.get(0);
    }
  /**
   * 层序遍历二叉树
   * @param root 二叉树根节点
   * @param nodeQueue ,用到的队列数据结构
   */
   public void trivalBinTree(Node root, Queue<Node> nodeQueue) {
    nodeQueue.add(root);
    Node temp = null;
    while ((temp = nodeQueue.poll()) != null) {
      System.out.print(temp.data + " ");
      if (temp.leftchild != null) {
        nodeQueue.add(temp.leftchild);
      }
      if (temp.rightchild != null) {
        nodeQueue.add(temp.rightchild);
      }
    }
  }
   /**
    * 先序遍历
    * @param root 二叉树根节点
    */
    public void preTrival(Node root) {
      if(root == null) {
        return;
      }
      System.out.print(root.data + " ");
      preTrival(root.leftchild);
      preTrival(root.rightchild);
    }
    /**
     * 中序遍历
     * @param root 二叉树根节点
     */
    public void midTrival(Node root) {
      if(root == null) {
        return;
      }
      midTrival(root.leftchild);
      System.out.print(root.data + " ");
      midTrival(root.rightchild);
    }
    /**
     * 后序遍历
     * @param root 二叉树根节点
     */
    public void afterTrival(Node root) {
      if(root == null) {
        return;
      }
      afterTrival(root.leftchild);
      afterTrival(root.rightchild);
      System.out.print(root.data + " ");
    }
    public static void main(String[] args) {
      TestBinTree btree = new TestBinTree();
      int[] arr = new int[] {1,2,3,4,5,6,7};
      Node root = btree.initBinTree(arr);
      Queue<Node> nodeQueue = new ArrayDeque<>();
      System.out.println("我们测试结果:");
      System.out.println("层序遍历:");
      btree.trivalBinTree(root, nodeQueue);
      System.out.println("\n先序遍历:");
      btree.preTrival(root);
      System.out.println("\n中序遍历:");
      btree.midTrival(root);
      System.out.println("\n后序遍历:");
      btree.afterTrival(root);
    }
}

运行结果:

附:满二叉树 与完全二叉树的区别

满二叉树是指这样的一种二叉树:除最后一层外,每一层上的所有结点都有两个子结点。在满二叉树中,每一层上的结点数都达到最大值,即在满二叉树的第k层上有2k-1个结点,且深度为m的满二叉树有2m-1个结点。

完全二叉树是指这样的二叉树:除最后一层外,每一层上的结点数均达到最大值;在最后一层上只缺少右边的若干结点。

对于完全二叉树来说,叶子结点只可能在层次最大的两层上出现:对于任何一个结点,若其右分支下的子孙结点的最大层次为p,则其左分支下的子孙结点的最大层次或为p,或为p+1。

完全二叉树具有以下两个性质:

性质5:具有n个结点的完全二叉树的深度为[log2n]+1。

性质6:设完全二叉树共有n个结点。如果从根结点开始,按层次(每一层从左到右)用自然数1,2,……,n给结点进行编号,则对于编号为k(k=1,2,……,n)的结点有以下结论:

①若k=1,则该结点为根结点,它没有父结点;若k>1,则该结点的父结点编号为INT(k/2)。

②若2k≤n,则编号为k的结点的左子结点编号为2k;否则该结点无左子结点(显然也没有右子结点)。

③若2k+1≤n,则编号为k的结点的右子结点编号为2k+1;否则该结点无右子结点。

满二叉树肯定是完全二叉树,完全二叉树不一定是满二叉树。

更多关于java算法相关内容感兴趣的读者可查看本站专题:《Java数据结构与算法教程》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》和《Java缓存操作技巧汇总》

希望本文所述对大家java程序设计有所帮助。

(0)

相关推荐

  • 图解红黑树及Java进行红黑二叉树遍历的方法

    红黑树 红黑树是一种数据结构与算法课堂上常常提到但又不会细讲的树,也是技术面试中经常被问到的树,然而无论是书上还是网上的资料,通常都比较刻板难以理解,能不能一种比较直观的方式来理解红黑树呢?本文将以图形的方式来解释红黑树的插入与删除操作. 对树结构的学习是一个递进的过程,我们通常所接触的树都是二叉树,二叉树简单来说就是每个非叶子节点都有且只有两个孩子,分别叫做左孩子和右孩子.二叉树中有一类特殊的树叫二叉查找树,二叉查找树是一种有序的树,对于每个非叶子节点,其左子树的值都小于它,其右子树的值都大于

  • java 完全二叉树的构建与四种遍历方法示例

    本来就是基础知识,不能丢的太干净,今天竟然花了那么长的时间才写出来,记一下. 有如下的一颗完全二叉树: 先序遍历结果应该为:1  2  4  5  3  6  7 中序遍历结果应该为:4  2  5  1  6  3  7 后序遍历结果应该为:4  5  2  6  7  3  1 层序遍历结果应该为:1  2  3  4  5  6  7 二叉树的先序遍历.中序遍历.后序遍历其实都是一样的,都是执行递归操作. 我这记录一下层次遍历吧:层次遍历需要用到队列,先入队在出队,每次出队的元素检查是其是

  • JAVA 实现二叉树(链式存储结构)

    二叉树的分类(按存储结构) 树的分类(按存储结构) 顺序存储(用数组表示(静态二叉树))   链式存储 一些特别的二叉根: 完全二叉树,平衡二叉树(AVL),线索二叉树,三叉的(带父亲的指针)    二叉搜索树或者叫二叉 查找树(BST)  所用二叉树如下图所示: 二叉树的Java实现(链式存储结构) class TreeNode { private int key = 0; private String data = null; private boolean isVisted = false

  • java使用归并删除法删除二叉树中节点的方法

    本文实例讲述了java使用归并删除法删除二叉树中节点的方法.分享给大家供大家参考.具体分析如下: 实现的思想很简单: first:找到要删除的节点 second:如果删除的节点没有右子树那么左子树链到父节点 third:如果删除的节点没有左子树那么右子树链到父节点 forth:如果删除的节点又左右孩子,那么可以归并删除节点后的子树:方法有两种一种是用删除节点的左子树的最右节点,指向删除节点的右子树,另一种是用删除节点的用字数的最左节点指向删除节点的左子树. Java 实现如下: public v

  • Java的二叉树排序以及遍历文件展示文本格式的文件树

    Java二叉树排序算法 排序二叉树的描述也是一个递归的描述, 所以排序二叉树的构造自然也用递归的: 排序二叉树的3个特征: 1:当前node的所有左孩子的值都小于当前node的值: 2:当前node的所有右孩子的值都大于当前node的值: 3:孩子节点也满足以上两点 package test.sort; public class BinaryNode { private int value;//current value private BinaryNode lChild;//left chil

  • java 数据结构二叉树的实现代码

    1. 二叉树接口 public interface BinaryTreeInterface<T> { public T getRootData(); public int getHeight(); public int getNumberOfRoot(); public void clear(); public void setTree(T rootData); // 用rootData设置树 public void setTree(T rootData,BinaryTreeInterface

  • Java中二叉树数据结构的实现示例

    来看一个具体的习题实践: 题目 根据二叉树前序遍历序列例如:7,-7,8,#,#,-3,6,#,9,#,#,#,-5,#,#,构建二叉树,并且用前序.中序.后序进行遍历 代码 import java.util.Scanner; public class BinaryTree { public static String[] str; public static int count; /** * 静态内部类,定义二叉树节点 */ static class TreeNode { public Str

  • Java实现求二叉树的深度和宽度

    这个是常见的对二叉树的操作.总结一下: 设节点的数据结构,如下: 复制代码 代码如下: class TreeNode {     char val;     TreeNode left = null;     TreeNode right = null; TreeNode(char _val) {         this.val = _val;     } } 1.二叉树深度 这个可以使用递归,分别求出左子树的深度.右子树的深度,两个深度的较大值+1即可. 复制代码 代码如下: // 获取最大

  • 图解二叉树的三种遍历方式及java实现代码

    二叉树(binary tree)是一颗树,其中每个节点都不能有多于两个的儿子. 1.二叉树节点 作为图的特殊形式,二叉树的基本组成单元是节点与边:作为数据结构,其基本的组成实体是二叉树节点(binary tree node),而边则对应于节点之间的相互引用. 如下,给出了二叉树节点的数据结构图示和相关代码: // 定义节点类: private static class BinNode { private Object element; private BinNode lChild;// 定义指向

  • 详解java实现遍历二叉树的三种情况

    遍历二叉树,从上往下遍历.但是同层节点可以从左向右遍历,也可以从右向左遍历(也就是之字型遍历),其中,都需要队列进行实现.只是按照之字型稍微麻烦一些. (1)从上往下打印出二叉树的每个节点,同层节点从左至右打印. 需要一个队列,队列里面放节点(从根节点开始),然后依次进行打印. import java.util.ArrayList; import java.util.Queue; import java.util.LinkedList; class TreeNode{ int val = 0;

  • java实现二叉树的创建及5种遍历方法(总结)

    用java实现的数组创建二叉树以及递归先序遍历,递归中序遍历,递归后序遍历,非递归前序遍历,非递归中序遍历,非递归后序遍历,深度优先遍历,广度优先遍历8种遍历方式: package myTest; import java.util.ArrayList; import java.util.LinkedList; import java.util.List; import java.util.Stack; public class myClass { public static void main(

随机推荐