Java完全二叉树的创建与四种遍历方法分析
本文实例讲述了Java完全二叉树的创建与四种遍历方法。分享给大家供大家参考,具体如下:
有如下的一颗完全二叉树:
先序遍历结果应该为:1 2 4 5 3 6 7
中序遍历结果应该为:4 2 5 1 6 3 7
后序遍历结果应该为:4 5 2 6 7 3 1
层序遍历结果应该为:1 2 3 4 5 6 7
二叉树的先序遍历、中序遍历、后序遍历其实都是一样的,都是执行递归操作。
我这记录一下层次遍历吧:层次遍历需要用到队列,先入队在出队,每次出队的元素检查是其是否有左右孩子,有则将其加入队列,由于利用队列的先进先出原理,进行层次遍历。
下面记录下完整代码(java实现),包括几种遍历方法:
import java.util.ArrayDeque; import java.util.ArrayList; import java.util.List; import java.util.Queue; /** * 定义二叉树节点元素 * @author bubble * */ class Node { public Node leftchild; public Node rightchild; public int data; public Node(int data) { this.data = data; } } public class TestBinTree { /** * 将一个arry数组构建成一个完全二叉树 * @param arr 需要构建的数组 * @return 二叉树的根节点 */ public Node initBinTree(int[] arr) { if(arr.length == 1) { return new Node(arr[0]); } List<Node> nodeList = new ArrayList<>(); for(int i = 0; i < arr.length; i++) { nodeList.add(new Node(arr[i])); } int temp = 0; while(temp <= (arr.length - 2) / 2) { //注意这里,数组的下标是从零开始的 if(2 * temp + 1 < arr.length) nodeList.get(temp).leftchild = nodeList.get(2 * temp + 1); if(2 * temp + 2 < arr.length) nodeList.get(temp).rightchild = nodeList.get(2 * temp + 2); temp++; } return nodeList.get(0); } /** * 层序遍历二叉树 * @param root 二叉树根节点 * @param nodeQueue ,用到的队列数据结构 */ public void trivalBinTree(Node root, Queue<Node> nodeQueue) { nodeQueue.add(root); Node temp = null; while ((temp = nodeQueue.poll()) != null) { System.out.print(temp.data + " "); if (temp.leftchild != null) { nodeQueue.add(temp.leftchild); } if (temp.rightchild != null) { nodeQueue.add(temp.rightchild); } } } /** * 先序遍历 * @param root 二叉树根节点 */ public void preTrival(Node root) { if(root == null) { return; } System.out.print(root.data + " "); preTrival(root.leftchild); preTrival(root.rightchild); } /** * 中序遍历 * @param root 二叉树根节点 */ public void midTrival(Node root) { if(root == null) { return; } midTrival(root.leftchild); System.out.print(root.data + " "); midTrival(root.rightchild); } /** * 后序遍历 * @param root 二叉树根节点 */ public void afterTrival(Node root) { if(root == null) { return; } afterTrival(root.leftchild); afterTrival(root.rightchild); System.out.print(root.data + " "); } public static void main(String[] args) { TestBinTree btree = new TestBinTree(); int[] arr = new int[] {1,2,3,4,5,6,7}; Node root = btree.initBinTree(arr); Queue<Node> nodeQueue = new ArrayDeque<>(); System.out.println("我们测试结果:"); System.out.println("层序遍历:"); btree.trivalBinTree(root, nodeQueue); System.out.println("\n先序遍历:"); btree.preTrival(root); System.out.println("\n中序遍历:"); btree.midTrival(root); System.out.println("\n后序遍历:"); btree.afterTrival(root); } }
运行结果:
附:满二叉树 与完全二叉树的区别
满二叉树是指这样的一种二叉树:除最后一层外,每一层上的所有结点都有两个子结点。在满二叉树中,每一层上的结点数都达到最大值,即在满二叉树的第k层上有2k-1个结点,且深度为m的满二叉树有2m-1个结点。
完全二叉树是指这样的二叉树:除最后一层外,每一层上的结点数均达到最大值;在最后一层上只缺少右边的若干结点。
对于完全二叉树来说,叶子结点只可能在层次最大的两层上出现:对于任何一个结点,若其右分支下的子孙结点的最大层次为p,则其左分支下的子孙结点的最大层次或为p,或为p+1。
完全二叉树具有以下两个性质:
性质5:具有n个结点的完全二叉树的深度为[log2n]+1。
性质6:设完全二叉树共有n个结点。如果从根结点开始,按层次(每一层从左到右)用自然数1,2,……,n给结点进行编号,则对于编号为k(k=1,2,……,n)的结点有以下结论:
①若k=1,则该结点为根结点,它没有父结点;若k>1,则该结点的父结点编号为INT(k/2)。
②若2k≤n,则编号为k的结点的左子结点编号为2k;否则该结点无左子结点(显然也没有右子结点)。
③若2k+1≤n,则编号为k的结点的右子结点编号为2k+1;否则该结点无右子结点。
满二叉树肯定是完全二叉树,完全二叉树不一定是满二叉树。
更多关于java算法相关内容感兴趣的读者可查看本站专题:《Java数据结构与算法教程》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》和《Java缓存操作技巧汇总》
希望本文所述对大家java程序设计有所帮助。