人脸识别经典算法一 特征脸方法(Eigenface)

这篇文章是撸主要介绍人脸识别经典方法的第一篇,后续会有其他方法更新。特征脸方法基本是将人脸识别推向真正可用的第一种方法,了解一下还是很有必要的。特征脸用到的理论基础PCA在另一篇博客里:特征脸(Eigenface)理论基础-PCA(主成分分析法)。本文的参考资料附在最后了^_^

步骤一:获取包含M张人脸图像的集合S。在我们的例子里有25张人脸图像(虽然是25个不同人的人脸的图像,但是看着怎么不像呢,难道我有脸盲症么),如下图所示哦。每张图像可以转换成一个N维的向量(是的,没错,一个像素一个像素的排成一行就好了,至于是横着还是竖着获取原图像的像素,随你自己,只要前后统一就可以),然后把这M个向量放到一个集合S里,如下式所示。

步骤二:在获取到人脸向量集合S后,计算得到平均图像Ψ,至于怎么计算平均图像,公式在下面。就是把集合S里面的向量遍历一遍进行累加,然后取平均值。得到的这个Ψ其实还挺有意思的,Ψ其实也是一个N维向量,如果再把它还原回图像的形式的话,可以得到如下的“平均脸”,是的没错,还他妈的挺帅啊。那如果你想看一下某计算机学院男生平均下来都长得什么样子,用上面的方法就可以了。

步骤三:计算每张图像和平均图像的差值Φ,就是用S集合里的每个元素减去步骤二中的平均值。

步骤四:找到M个正交的单位向量un,这些单位向量其实是用来描述Φ(步骤三中的差值)分布的。un里面的第k(k=1,2,3...M)个向量uk是通过下式计算的,

当这个λk(原文里取了个名字叫特征值)取最小的值时,uk基本就确定了。补充一下,刚才也说了,这M个向量是相互正交而且是单位长度的,所以啦,uk还要满足下式:

上面的等式使得uk为单位正交向量。计算上面的uk其实就是计算如下协方差矩阵的特征向量:

其中

对于一个NxN(比如100x100)维的图像来说,上述直接计算其特征向量计算量实在是太大了(协方差矩阵可以达到10000x10000),所以有了如下的简单计算。

步骤四另解:如果训练图像的数量小于图像的维数比如(M<N^2),那么起作用的特征向量只有M-1个而不是N^2个(因为其他的特征向量对应的特征值为0),所以求解特征向量我们只需要求解一个NxN的矩阵。这个矩阵就是步骤四中的AAT,我们可以设该矩阵为L,那么L的第m行n列的元素可以表示为:

一旦我们找到了L矩阵的M个特征向量vl,那么协方差矩阵的特征向量ul就可以表示为:

这些特征向量如果还原成像素排列的话,其实还蛮像人脸的,所以称之为特征脸(如下图)。图里有二十五个特征脸,数量上和训练图像相等只是巧合。有论文表明一般的应用40个特征脸已经足够了。论文Eigenface for recognition里只用了7个特征脸来表明实验。

步骤五:识别人脸。OK,终于到这步了,别绕晕啦,上面几步是为了对人脸进行降维找到表征人脸的合适向量的。首先考虑一张新的人脸,我们可以用特征脸对其进行标示:

其中k=1,2...M,对于第k个特征脸uk,上式可以计算其对应的权重,M个权重可以构成一个向量:

perfect,这就是求得的特征脸对人脸的表示了!

那如何对人脸进行识别呢,看下式:

其中Ω代表要判别的人脸,Ωk代表训练集内的某个人脸,两者都是通过特征脸的权重来表示的。式子是对两者求欧式距离,当距离小于阈值时说明要判别的脸和训练集内的第k个脸是同一个人的。当遍历所有训练集都大于阈值时,根据距离值的大小又可分为是新的人脸或者不是人脸的两种情况。根据训练集的不同,阈值设定并不是固定的。

后续会有对PCA理论的补充^_^.已补充理论:特征脸(Eigenface)理论基础-PCA(主成分分析法)

参考资料:

1、Eigenface for Recognition

2、特征脸维基百科

3、Eigenface_tutorial

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • Python3结合Dlib实现人脸识别和剪切
  • Python人脸识别初探
  • python+opencv实现的简单人脸识别代码示例
  • python实现人脸识别代码
  • 详解如何用OpenCV + Python 实现人脸识别
  • python使用opencv进行人脸识别
  • Python 40行代码实现人脸识别功能
  • python结合opencv实现人脸检测与跟踪
  • python中使用OpenCV进行人脸检测的例子
  • Python+OpenCV人脸检测原理及示例详解
(0)

相关推荐

  • 详解如何用OpenCV + Python 实现人脸识别

    下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数

  • python中使用OpenCV进行人脸检测的例子

    OpenCV的人脸检测功能在一般场合还是不错的.而ubuntu正好提供了python-opencv这个包,用它可以方便地实现人脸检测的代码. 写代码之前应该先安装python-opencv: 复制代码 代码如下: $ sudo apt-get install python-opencv 具体原理就不多说了,可以参考一下这篇文章.直接上源码. 复制代码 代码如下: #!/usr/bin/python# -*- coding: UTF-8 -*- # face_detect.py # Face De

  • Python+OpenCV人脸检测原理及示例详解

    关于opencv OpenCV 是 Intel 开源计算机视觉库 (Computer Version) .它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法. OpenCV 拥有包括 300 多个 C 函数的跨平台的中.高层 API .它不依赖于其它的外部库 -- 尽管也可以使用某些外部库. OpenCV 对非商业应用和商业应用都是免费 的.同时 OpenCV 提供了对硬件的访问,可以直接访问摄像头,并且 opencv 还提供了一个简单的 GUI(graph

  • python实现人脸识别代码

    从实时视频流中识别出人脸区域,从原理上看,其依然属于机器学习的领域之一,本质上与谷歌利用深度学习识别出猫没有什么区别.程序通过大量的人脸图片数据进行训练,利用数学算法建立建立可靠的人脸特征模型,如此即可识别出人脸.幸运的是,这些工作OpenCV已经帮我们做了,我们只需调用对应的API函数即可,先给出代码: #-*- coding: utf-8 -*- import cv2 import sys from PIL import Image def CatchUsbVideo(window_name

  • python使用opencv进行人脸识别

    环境 ubuntu 12.04 LTS python 2.7.3 opencv 2.3.1-7 安装依赖 sudo apt-get install libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy 示例代码 #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv d

  • Python 40行代码实现人脸识别功能

    前言 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了.这些人里包括曾经的我自己.其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难.今天我们就来看看如何在40行代码以内简单地实现人脸识别. 一点区分 对于大部分人来说,区分人脸检测和人脸识别完全不是问题.但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的.其实,人脸检测解决的问题是确定一张图上有木有人脸,而人

  • python结合opencv实现人脸检测与跟踪

    模式识别课上老师留了个实验,在VC++环境下利用OpenCV库编程实现人脸检测与跟踪. 然后就开始下载opencv和vs2012,再然后,配置了好几次还是配置不成功,这里不得不吐槽下微软,软件做这么大,这么难用真的好吗? 于是就尝试了一下使用python完成实验任务,大概过程就是这样子的: 首先,配置运行环境: 下载opencv和python的比较新的版本,推荐opencv2.4.X和python2.7.X. 直接去官网下载就ok了,python安装时一路next就行,下载的opencv.exe

  • Python人脸识别初探

    本文实例为大家分享了Python人脸识别的具体代码,供大家参考,具体内容如下 1.利用opencv库 sudo apt-get install libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy 2 .Python实现 import os import os from PIL import Image,ImageDraw import cv def detect_object(image

  • python+opencv实现的简单人脸识别代码示例

    # 源码如下: #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv def detect_object(image): '''检测图片,获取人脸在图片中的坐标''' grayscale = cv.CreateImage((image.width, image.height), 8, 1) cv.CvtColor(image, grayscale, cv.CV_BGR2GR

  • Python3结合Dlib实现人脸识别和剪切

    0.引言 利用python开发,借助Dlib库进行人脸识别,然后将检测到的人脸剪切下来,依次排序显示在新的图像上: 实现的效果如下图所示,将图1原图中的6张人脸检测出来,然后剪切下来,在图像窗口中依次输出显示人脸: 实现比较简单,代码量也比较少,适合入门或者兴趣学习. 图1 原图和处理后得到的图像窗口 1.开发环境 python: 3.6.3 dlib: 19.7 OpenCv, numpy import dlib # 人脸识别的库dlib import numpy as np # 数据处理的库

随机推荐