关于python线程池的四种实现方式

目录
  • python 线程池的四种实现方式
    • 线程简述
    • 方式1 multiprocessing.dummy Pool()
    • 方式2:multiprocessing.pool ThreadPool Threading()
    • 方式3:主流ThreadPoolExecutor
    • 方式4:threadpool

python 线程池的四种实现方式

线程简述

一个程序运行起来后,一定有一个执行代码的东西,这个东西就是线程;
 一般计算(CPU)密集型任务适合多进程,IO密集型任务适合多线程;
一个进程可拥有多个并行的(concurrent)线程,当中每一个线程,共享当前进程的资源

以下是对发现的几种多线程进行的汇总整理,均已测试运行 多线程实现的四种方式分别是:

multiprocessing下面有两种:

from multiprocessing.dummy import Pool as ThreadPool  # 线程池

from multiprocessing.pool import ThreadPool   # 线程池,用法无区别,唯一区别这个是线程池
另外两种:
from concurrent.futures import ThreadPoolExecutor  # python原生线程池,这个更主流

import threadpool  # 线程池,需要 pip install threadpool,很早之前的

方式1 multiprocessing.dummy Pool()

  • 非阻塞方法

multiprocessing.dummy.Pool.apply_async() 和 multiprocessing.dummy.Pool.imap()
线程并发执行

  • 阻塞方法

multiprocessing.dummy.Pool.apply()和 multiprocessing.dummy.Pool.map()
线程顺序执行

from multiprocessing.dummy import Pool as Pool
import time

def func(msg):
    print('msg:', msg)
    time.sleep(2)
    print('end:')

pool = Pool(processes=3)
for i in range(1, 5):
    msg = 'hello %d' % (i)
    pool.apply_async(func, (msg,))  # 非阻塞,子线程有返回值
    # pool.apply(func,(msg,))       # 阻塞,apply()源自内建函数,用于间接的调用函数,并且按位置把元祖或字典作为参数传入。子线程无返回值
    # pool.imap(func,[msg,])        # 非阻塞, 注意与apply传的参数的区别 无返回值
    # pool.map(func, [msg, ])       # 阻塞 子线程无返回值

print('Mark~~~~~~~~~~~~~~~')
pool.close()
pool.join()  # 调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
print('sub-process done')

运行结果:

方式2:multiprocessing.pool ThreadPool Threading()

from multiprocessing.pool import ThreadPool   # 线程池,用法无区别,唯一区别这个是线程池
from multiprocessing.dummy import Pool as ThreadPool  # 线程池
import os
import time

print("hi outside of main()")

def hello(x):
    print("inside hello()")
    print("Proccess id: %s" %(os.getpid()))
    time.sleep(3)
    return x*x

if __name__ == "__main__":
    p = ThreadPool(5)
    pool_output = p.map(hello, range(3))
    print(pool_output)

运行结果:

方式3:主流ThreadPoolExecutor

from concurrent.futures import ThreadPoolExecutor
import threading
import time

# 定义一个准备作为线程任务的函数
def action(max):
    my_sum = 0
    for i in range(max):
        print(threading.current_thread().name + '  ' + str(i))
        my_sum += i
    return my_sum
# 创建一个包含2条线程的线程池
pool = ThreadPoolExecutor(max_workers=2)
# 向线程池提交一个task, 20会作为action()函数的参数
future1 = pool.submit(action, 20)
# 向线程池再提交一个task, 30会作为action()函数的参数
future2 = pool.submit(action, 30)
# 判断future1代表的任务是否结束
print(future1.done())
time.sleep(3)
# 判断future2代表的任务是否结束
print(future2.done())
# 查看future1代表的任务返回的结果
print(future1.result())
# 查看future2代表的任务返回的结果
print(future2.result())
# 关闭线程池
pool.shutdown()

运行结果:

方式4:threadpool

需要 pip install threadpool

import threadpool

def hello(m, n, o):
    """"""
    print("m = %s, n = %s, o = %s" % (m, n, o))

if __name__ == '__main__':
    # 方法1
    # lst_vars_1 = ['1', '2', '3']
    # lst_vars_2 = ['4', '5', '6']
    # func_var = [(lst_vars_1, None), (lst_vars_2, None)]
    # 方法2
    dict_vars_1 = {'m': '1', 'n': '2', 'o': '3'}
    dict_vars_2 = {'m': '4', 'n': '5', 'o': '6'}
    func_var = [(None, dict_vars_1), (None, dict_vars_2)]
    # 定义了一个线程池,表示最多可以创建poolsize这么多线程
    pool = threadpool.ThreadPool(2)
    # 调用makeRequests创建了要开启多线程的函数,以及函数相关参数和回调函数,其中回调函数可以不写
    requests = threadpool.makeRequests(hello, func_var)
    [pool.putRequest(req) for req in requests]   # 将所有要运行多线程的请求扔进线程池
    pool.wait()   # 等待所有线程完成工作后退出

"""
[pool.putRequest(req) for req in requests]等同于
  for req in requests:
     pool.putRequest(req)
"""

运行结果:

到此这篇关于关于python线程池的四种实现方式的文章就介绍到这了,更多相关python线程池实现内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 浅谈一下python线程池简单应用

    一.线程池简介 传统多线程方案会使用“即时创建,即时销毁”的策略.尽管与创建进程相比,创建线程的时间已经大大的缩短,但是如果提交给线程的任务时执行时间较短,而且执行次数及其频繁,那么服务器将处于不停的创建线程,销毁线程的状态. 一个线程的运行时间可以分为三部分:线程的启动时间.线程体的运行时间和线程的销毁时间. 在多线程处理的情景中,如果线程不能被重用,就意味着每次线程运行都要经过启动.销毁和运行3个过程.这必然会增加系统相应的时间,减低了效率. 线程池在系统启动时即创建大量空闲的线程,程序只要

  • python中ThreadPoolExecutor线程池和ProcessPoolExecutor进程池

    目录 1.ThreadPoolExecutor多线程 <1>为什么需要线程池呢? <2>标准库concurrent.futures模块 <3>简单使用 <4>as_completed(一次性获取所有的结果) <5>map()方法 <6>wait()方法 2.ProcessPoolExecutor多进程 <1>同步调用方式: 调用,然后等返回值,能解耦,但是速度慢 <2>异步调用方式:只调用,不等返回值,可能存在

  • Python线程池的实现浅析

    目录 一.序言 二.正文 1.Future 对象 2.提交函数自动创建 Future 对象 3.future.set_result 到底干了什么事情 4.提交多个函数 5.使用 map 来提交多个函数 6.按照顺序等待执行 7.取消一个函数的执行 8.函数执行时出现异常 9.等待所有函数执行完毕 三.小结 雷猴啊,兄弟们!今天来展示一下如何用Python快速实现一个线程池. 一.序言 当有多个 IO 密集型的任务要被处理时,我们自然而然会想到多线程.但如果任务非常多,我们不可能每一个任务都启动一

  • Python实现线程池工作模式的案例详解

    目录 01.客户机/服务器通信逻辑 02.数据交换协议 03.服务器主体逻辑 04.服务器会话线程 05.客户机主体逻辑 06.客户机发送数据 07.客户机接收数据 08.客户机界面设计 09.线程池 10.联合测试 11.小结 本文章基于苹果树病虫害预测模型,自定义应用层通信逻辑,设计服务器与客户机.客户机向服务器发送图像数据,服务器回送预测结果.为增强服务器的可靠性与可扩展性,服务器端采用线程池工作模式.为了增强客户机的可操作性,客户机采用PyQt5完成图形化界面设计. 01.客户机/服务器

  • Python快速实现一个线程池的示例代码

    目录 楔子 Future 对象 提交函数自动创建 Future 对象 future.set_result 到底干了什么事情 提交多个函数 使用 map 来提交多个函数 按照顺序等待执行 取消一个函数的执行 函数执行时出现异常 等待所有函数执行完毕 小结 楔子 当有多个 IO 密集型的任务要被处理时,我们自然而然会想到多线程.但如果任务非常多,我们不可能每一个任务都启动一个线程去处理,这个时候最好的办法就是实现一个线程池,至于池子里面的线程数量可以根据业务场景进行设置. 比如我们实现一个有 10

  • 关于python3的ThreadPoolExecutor线程池大小设置

    线程池的理想大小取决于被提交任务的类型以及所部署系统的特性. 线程池应该避免设置的过大或过小,如果线程池过大,大量的线程将在相对很少的CPU和内存资源上发生竞争,这不仅会导致更高的内存使用量,而且还可能耗尽资源.如果线程池过小,那么将导致许多空闲处理器无法执行任务,降低了系统吞吐率. 要想合理的配置线程池的大小,首先得分析任务的特性,可以从以下几个角度分析: 任务的性质:CPU密集型任务.IO密集型任务.混合型任务. 任务的优先级:高.中.低. 任务的执行时间:长.中.短. 任务的依赖性:是否依

  • 关于python线程池的四种实现方式

    目录 python 线程池的四种实现方式 线程简述 方式1 multiprocessing.dummy Pool() 方式2:multiprocessing.pool ThreadPool Threading() 方式3:主流ThreadPoolExecutor 方式4:threadpool python 线程池的四种实现方式 线程简述 一个程序运行起来后,一定有一个执行代码的东西,这个东西就是线程: 一般计算(CPU)密集型任务适合多进程,IO密集型任务适合多线程:一个进程可拥有多个并行的(c

  • python线程池的四种好处总结

    1.使用好处 提高性能:由于减去了大量新建终止线程的费用,重用了线程资源: 适用场景:适用于处理大量突发请求或需要大量线程完成任务,但实际任务处理时间短. 防御功能:可以有效避免系统因线程过多而导致系统负载过大而相应变慢的问题. 代码优势:使用线程池的语法比创建自己的线程更简单. 2.实例 """ @file : 004-线程池的使用.py @author : xiaolu @email : luxiaonlp@163.com @time : 2021-02-01 "

  • java线程池的四种创建方式详细分析

    目录 前言 1. 线程池 2. 创建方式 前言 在讲述线程池的前提 先补充一下连接池的定义 连接池是创建和管理一个连接的缓冲池的技术,这些连接准备好被任何需要它们的线程使用 可以看到其连接池的作用如下: 1. 线程池 线程池(英语:thread pool):一种线程使用模式.线程过多会带来调度开销,进而影响缓存局部性和整体性能.而线程池维护着多个线程,等待着监督管理者分配可并发执行的任务.这避免了在处理短时间任务时创建与销毁线程的代价.线程池不仅能够保证内核的充分利用,还能防止过分调度 特点:

  • Java线程池的四种拒绝策略详解

    目录 预先配置 配置线程池. 创建线程任务 拒绝策略一:AbortPolicy 拒绝策略二:CallerRunsPolicy 拒绝策略三:DiscardPolicy 拒绝策略四:DiscardOldestPolicy 总结 dk1.5版本新增了 JUC 并发包,其中一个包含线程池. 四种拒绝策略:   拒绝策略类型 说明 1 ThreadPoolExecutor.AbortPolicy 默认拒绝策略,拒绝任务并抛出任务 2 ThreadPoolExecutor.CallerRunsPolicy

  • Python协程的四种实现方式总结

    目录 一.yield关键字实现方式 二.greenlet实现方式 三.asyncio实现方式 四.async和await关键字实现方式 一.yield关键字实现方式 以yield关键字方式实现协程代码如下所示: def fun1(): yield 1 yield from fun2() yield 2 def fun2(): yield 3 yield 4 f1=fun1() for item in f1: print(item) 在上述代码中,一个Python函数中存在由yiled,就说明为生

  • 实例代码讲解Python 线程池

    大家都知道当任务过多,任务量过大时如果想提高效率的一个最简单的方法就是用多线程去处理,比如爬取上万个网页中的特定数据,以及将爬取数据和清洗数据的工作交给不同的线程去处理,也就是生产者消费者模式,都是典型的多线程使用场景. 那是不是意味着线程数量越多,程序的执行效率就越快呢. 显然不是.线程也是一个对象,是需要占用资源的,线程数量过多的话肯定会消耗过多的资源,同时线程间的上下文切换也是一笔不小的开销,所以有时候开辟过多的线程不但不会提高程序的执行效率,反而会适得其反使程序变慢,得不偿失. 所以,如

  • python线程池 ThreadPoolExecutor 的用法示例

    前言 从Python3.2开始,标准库为我们提供了 concurrent.futures 模块,它提供了 ThreadPoolExecutor (线程池)和ProcessPoolExecutor (进程池)两个类. 相比 threading 等模块,该模块通过 submit 返回的是一个 future 对象,它是一个未来可期的对象,通过它可以获悉线程的状态主线程(或进程)中可以获取某一个线程(进程)执行的状态或者某一个任务执行的状态及返回值: 主线程可以获取某一个线程(或者任务的)的状态,以及返

  • Python线程池thread pool创建使用及实例代码分享

    目录 前言 一.线程 1.线程介绍 2.线程特性 轻型实体 独立调度和分派的基本单位 可并发执行 4)共享进程资源 二.线程池 三.线程池的设计思路 四.Python线程池构建 1.构建思路 2.实现库功能函数 ThreadPoolExecutor() submit() result() cancel() cancelled() running() as_completed() map() 前言 首先线程和线程池不管在哪个语言里面,理论都是通用的.对于开发来说,解决高并发问题离不开对多个线程处理

  • Python线程池模块ThreadPoolExecutor用法分析

    本文实例讲述了Python线程池模块ThreadPoolExecutor用法.分享给大家供大家参考,具体如下: python3内置的有Threadingpool和ThreadPoolExecutor模块,两个都可以做线程池,当然ThreadPoolExecutor会更好用一些,而且也有ProcessPoolExecutor进程池模块,使用方法基本一致. 首先导入模块 from concurrent.futures import ThreadPoolExecutor 使用方法很简单,最常用的可能就

随机推荐