粗略分析Python中的内存泄漏

引子

之前一直盲目的认为 Python 不会存在内存泄露, 但是眼看着上线的项目随着运行时间的增长 而越来越大的内存占用, 我意识到我写的程序在发生内存泄露, 之前 debug 过 logging 模块导致的内存泄露.

目前看来, 还有别的地方引起的内存泄露. 经过一天的奋战, 终于找到了内存泄露的地方, 目前项目 跑了很长时间, 在业务量较小的时候内存还是能回到刚启动的时候的内存占用.
什么情况下不用这么麻烦

如果你的程序只是跑一下就退出大可不必大费周章的去查找是否有内存泄露, 因为 Python 在退出时 会释放它所分配的所有内存, 如果你的程序需要连续跑很长时间那么就要仔细的查找是否 产生了内存泄露.
场景

如何产生的内存泄露呢, 项目是一个 TCP server, 每当有连接过来时都会创建一个连接实例来进行 管理, 每次断开时连接实例还被占用并没有释放. 没有被释放的原因肯定是因为有某个地方对连接 实例的引用没有释放, 所以随着时间的推移, 连接创建分配内存, 连接断开并没有释放掉内存, 所以 就会产生内存泄露.
调试方法

由于不知道具体是哪里引起的内存泄露, 所以要耐心的一点点调试.

由于知道了断开连接时没有释放, 所以我就不停的模拟创建连接然后发送一些包后断开连接, 然后通过下面一行 shell 来观察内存占用情况:

PID=50662;while true; do; ps aux | grep $PID | grep -v grep | awk '{print $5" "$6}' >> t; sleep 1; done

如果在增长了一定的量后保持住就说明已经没有产生泄露.

同时可以在对象该释放的时候查看对象的引用计数, 通过 sys.getrefcount(obj). 如果引用计数变为了 2 则说明该对象在跳出命名空间后就会被正确回收.
产生原因

项目中两种情况导致对象没有被正确回收:

  • 被退出才回收的对象引用
  • 交叉引用

被退出才回收的对象引用

为了追踪连接所以把连接对象同时放在一个列表里, 而这个列表只有在程序退出时才会被回收, 如果不正确处理, 那么分配的对象将也会只在程序退出时才会被回收.

全局变量和类变量都只会在程序退出的时候才会被回收:

_CONNECTIONS = []

# ...
class Connection(object):
 def __init__(self, sock, address)
  pass

def server_loop():
 # ...
 sock, address = server_sock.accept()
 connection = Connection(sock, address)
 _CONNECTIONS.append(connection)
 # ...
 sock.close()

上面把所有建立的连接都放在全局变量 _CONNECTIONS 里, 如果在关闭的时候不从这个列表 里取出(减少引用)则 connection 对象就不会被回收, 则每建立一次连接就会有个连接对象和连接 对象引用的对象不会被回收.

如果把对象放在一个类属性里也是一样的, 因为类对象在程序一开始就分配, 并在程序退出时才被回收.

解决办法就是在退出时从列表(或其他对象)里解除对对象的引用(删除)

_CONNECTIONS = []

# ...
class Connection(object):
 def __init__(self, sock, address)
  pass

def server_loop():
 # ...
 sock, address = server_sock.accept()
 connection = Connection(sock, address)
 _CONNECTIONS.append(connection)
 try:
  # ...
  sock.close()
 finally:
  _CONNECTIONS.remove(connection) # XXX

交叉引用

有时候我们为对象分配一个实例属性时需要将自己本身赋值给实例属性, 作为实例属性的实例属性, 说着很拗口, 看一下代码:

class ConnectionHandler(object):
 def __init__(self, connection):
  self._conn = connection

class Connection(object):
 def __init__(self, sock, address)
  self._conn_handler = ConnectionHandler(self) # XXX

上面的代码就会产生交叉引用, 交叉引用会让解释器困惑, 从而之后只能靠2代和3代回收, 这个过程可能会很慢.

解决这种问题的方法就是使用 弱引用

import weakref

class ConnectionHandler(object):
 def __init__(self, connection):
  self._conn = connection

class Connection(object):
 def __init__(self, sock, address)
  self._conn_handler = ConnectionHandler(weakref.proxy(self)) # XXX
(0)

相关推荐

  • python内存管理分析

    本文较为详细的分析了python内存管理机制.分享给大家供大家参考.具体分析如下: 内存管理,对于Python这样的动态语言,是至关重要的一部分,它在很大程度上甚至决定了Python的执行效率,因为在Python的运行中,会创建和销毁大量的对象,这些都涉及到内存的管理. 小块空间的内存池 在Python中,许多时候申请的内存都是小块的内存,这些小块内存在申请后,很快又会被释放,由于这些内存的申请并不是为了创建对象,所以并没有对象一级的内存池机制. Python内存池全景 这就意味着Python在

  • python中查看变量内存地址的方法

    本文实例讲述了python中查看变量内存地址的方法.分享给大家供大家参考.具体实现方法如下: 这里可以使用id >>> print id.__doc__ id(object) -> integer Return the identity of an object. This is guaranteed to be unique among simultaneously existing objects. (Hint: it's the object's memory address

  • 有关wxpython pyqt内存占用问题分析

    一直觉得wxpython占用内存比较多,在工作中写的一些小程序应用,一对比其它的小程序,发现内存相差确实有点大. 测试了下QT框架 复制代码 代码如下: import sys,timefrom PyQt4 import QtCore, QtGui#import wxif __name__ == "__main__":while True:time.sleep(1) 只载入了框架,内存占用就有明显差别.载入wx的时候一般在20M左右,我写的几个应用也差不多是这么多,所以占用内存多的主要是

  • Python使用稀疏矩阵节省内存实例

    推荐系统中经常需要处理类似user_id, item_id, rating这样的数据,其实就是数学里面的稀疏矩阵,scipy中提供了sparse模块来解决这个问题,但scipy.sparse有很多问题不太合用: 1.不能很好的同时支持data[i, ...].data[..., j].data[i, j]快速切片: 2.由于数据保存在内存中,不能很好的支持海量数据处理. 要支持data[i, ...].data[..., j]的快速切片,需要i或者j的数据集中存储:同时,为了保存海量的数据,也需

  • 10种检测Python程序运行时间、CPU和内存占用的方法

    在运行复杂的Python程序时,执行时间会很长,这时也许想提高程序的执行效率.但该怎么做呢? 首先,要有个工具能够检测代码中的瓶颈,例如,找到哪一部分执行时间比较长.接着,就针对这一部分进行优化. 同时,还需要控制内存和CPU的使用,这样可以在另一方面优化代码. 因此,在这篇文章中我将介绍7个不同的Python工具,来检查代码中函数的执行时间以及内存和CPU的使用. 1. 使用装饰器来衡量函数执行时间 有一个简单方法,那就是定义一个装饰器来测量函数的执行时间,并输出结果: import time

  • 从Python的源码浅要剖析Python的内存管理

    Python 的内存管理架构(Objects/obmalloc.c): 复制代码 代码如下: _____   ______   ______       ________    [ int ] [ dict ] [ list ] ... [ string ]       Python core         | +3 | <----- Object-specific memory -----> | <-- Non-object memory --> |     _________

  • Python深入学习之内存管理

    语言的内存管理是语言设计的一个重要方面.它是决定语言性能的重要因素.无论是C语言的手工管理,还是Java的垃圾回收,都成为语言最重要的特征.这里以Python语言为例子,说明一门动态类型的.面向对象的语言的内存管理方式.  对象的内存使用 赋值语句是语言最常见的功能了.但即使是最简单的赋值语句,也可以很有内涵.Python的赋值语句就很值得研究. a = 1 整数1为一个对象.而a是一个引用.利用赋值语句,引用a指向对象1.Python是动态类型的语言(参考动态类型),对象与引用分离.Pytho

  • 粗略分析Python中的内存泄漏

    引子 之前一直盲目的认为 Python 不会存在内存泄露, 但是眼看着上线的项目随着运行时间的增长 而越来越大的内存占用, 我意识到我写的程序在发生内存泄露, 之前 debug 过 logging 模块导致的内存泄露. 目前看来, 还有别的地方引起的内存泄露. 经过一天的奋战, 终于找到了内存泄露的地方, 目前项目 跑了很长时间, 在业务量较小的时候内存还是能回到刚启动的时候的内存占用. 什么情况下不用这么麻烦 如果你的程序只是跑一下就退出大可不必大费周章的去查找是否有内存泄露, 因为 Pyth

  • Java中的内存泄漏

    Java.Lang.OutOfMemoryError: Java Heap Space Java应用程序只允许使用有限的内存.此限制在应用程序启动期间指定.为了使事情更复杂,Java内存被分成两个不同的区域.这些区域称为永久生成区域(permgene和Permgen): 这些区域的大小是在Java虚拟机(JVM)启动期间设置的,可以通过指定JVM参数-Xmx和-XX:MaxPermSize进行定制.如果未显式设置大小,则将使用特定于平台的默认值. 这个java.lang.OutOfMemoryE

  • 浅析Node.js中的内存泄漏问题

    这篇文章是由Mozilla的Identity团队带来的 A Node.JS Holiday Season系列文章的首篇,该团队上个月发布了 Persona的第一个测试版本.在开发Persona时我们构建了一系列的工具,包括了从调试,到本地化,到依赖管理以及更多的方面.在这一系列的文章中我们将与社区分享我们的经验和这些工具,这对任何想用node.js建立一个高可用性服务的人都很有用.我们希望您能喜欢这些文章,并期待看到您的想法和贡献. 我们将从一篇关于Node.js的实质性问题:内存泄漏的主题文章

  • Java中关于内存泄漏出现的原因汇总及如何避免内存泄漏(超详细版)

    Android 内存泄漏总结 内存管理的目的就是让我们在开发中怎么有效的避免我们的应用出现内存泄漏的问题.内存泄漏大家都不陌生了,简单粗俗的讲,就是该被释放的对象没有释放,一直被某个或某些实例所持有却不再被使用导致 GC 不能回收.最近自己阅读了大量相关的文档资料,打算做个 总结 沉淀下来跟大家一起分享和学习,也给自己一个警示,以后 coding 时怎么避免这些情况,提高应用的体验和质量. 我会从 java 内存泄漏的基础知识开始,并通过具体例子来说明 Android 引起内存泄漏的各种原因,以

  • C#中event内存泄漏总结

    内存泄漏是指:当一块内存被分配后,被丢弃,没有任何实例指针指向这块内存, 并且这块内存不会被GC视为垃圾进行回收.这块内存会一直存在,直到程序退出.C#是托管型代码,其内存的分配和释放都是由CLR负责,当一块内存没有任何实例引用时,GC会负责将其回收.既然没有任何实例引用的内存会被GC回收,那么内存泄漏是如何发生的? 内存泄漏示例 为了演示内存泄漏是如何发生的,我们来看一段代码 class Program { static event Action TestEvent; static void

  • Python中的内存管理之python list内存使用详解

    前言 使用 Python 的时候,我们知道 list 是一个长度可变对的数组, 可以通过 insert,append 和 extend 轻易的拓展其中的元素个数. 也可以使用运算符 如: [1] + [2] 生成新的数组[1, 2] extend(). "+"."+=" 的区别 "+"将两个 list 相加,会返回到一个新的 list 对象 append 在原 list 上进行修改,没有返回值 从以下代码可以看到, 调用 b = b + [3,

  • 浅析Java中的内存泄漏

    ava最明显的一个优势就是它的内存管理机制.你只需简单创建对象,java的垃圾回收机制负责分配和释放内存.然而情况并不像想像的那么简单,因为在Java应用中经常发生内存泄漏. 本教程演示了什么是内存泄漏,为什么会发生内存泄漏以及如何预防内存泄漏. 什么是内存泄漏? 定义:如果对象在应用中不再被使用,但由于它们在其他地方被引用,垃圾回收却不能移除它们(这样就造成了很多内存不能释放,从而导致内存溢出的现象.译注). 要理解这一定义,我们需要理解内存中对象的状态.下图说明了那些是未使用,那些是未引用.

  • iOS中wkwebView内存泄漏与循环引用问题详解

    前言 现在大多数网络也面加载都会用到wkwebview,之前在使用wkwebview的时候,网上很多的基础教程使用很多只是说了怎么添加Message Handler 但是并没有告诉到家有这个内存泄漏的风险,如果你只是也没内的数据调用你压根都不会发现这个问题.没存泄漏这个问题说大不大,说小不小,严重的话话直接到时app闪退,所以还是得重视起.好下面说一下怎么解决,话不多说了,来一起看看详细的介绍吧 解决方法 1,在做网页端js交互的时候 我们都会这样去添加js [self.customWebVie

  • iOS WKWebView中MessageHandler内存泄漏问题的完美解决过程

    背景 项目中使用了WKWebView替换了之前的UIWebView,牵扯到Hybird开发,我们需要和H5交互,所以用到了WKWebViewConfiguration 中的 WKUserContentController 所以初始化代码如下 WKUserContentController *userContentController = [[WKUserContentController alloc] init]; [userContentController addScriptMessageH

  • 分析Python中解析构建数据知识

    Python 可以通过各种库去解析我们常见的数据.其中 csv 文件以纯文本形式存储表格数据,以某字符作为分隔值,通常为逗号:xml 可拓展标记语言,很像超文本标记语言 Html ,但主要对文档和数据进行结构化处理,被用来传输数据:json 作为一种轻量级数据交换格式,比 xml 更小巧但描述能力却不差,其本质是特定格式的字符串:Microsoft Excel 是电子表格,可进行各种数据的处理.统计分析和辅助决策操作,其数据格式为 xls.xlsx.接下来主要介绍通过 Python 简单解析构建

随机推荐