Go和Java算法详析之分数到小数

目录
  • 分数到小数
  • 方法一:模拟竖式计算(Java)
  • 方法一:模拟竖式计算(Go)
  • 总结

分数到小数

给定两个整数,分别表示分数的分子 numerator 和分母 denominator,以 字符串形式返回小数 。

如果小数部分为循环小数,则将循环的部分括在括号内。

如果存在多个答案,只需返回 任意一个 。

对于所有给定的输入,保证 答案字符串的长度小于 104 。

  • 示例 1:

输入:numerator = 1, denominator = 2

输出:"0.5"

  • 示例 2:

输入:numerator = 2, denominator = 1

输出:"2"

  • 示例 3:

输入:numerator = 4, denominator = 333

输出:"0.(012)"

提示:

-231 <= numerator, denominator <= 231 - 1

denominator != 0

方法一:模拟竖式计算(Java)

这是一道模拟竖式计算(除法)的题目。

首先可以明确,两个数相除要么是「有限位小数」,要么是「无限循环小数」,而不可能是「无限不循环小数」。

将分数转成整数或小数,做法是计算分子和分母相除的结果。可能的结果有三种:整数、有限小数、无限循环小数。

如果分子可以被分母整除,则结果是整数,将分子除以分母的商以字符串的形式返回即可。

如果分子不能被分母整除,则结果是有限小数或无限循环小数,需要通过模拟长除法的方式计算结果。为了方便处理,首先根据分子和分母的正负决定结果的正负(注意此时分子和分母都不为 00),然后将分子和分母都转成正数,再计算长除法。

一个显然的条件是,如果本身两数能够整除,直接返回即可;

如果两个数有一个为“负数”,则最终答案为“负数”,因此可以起始先判断两数相乘是否小于 00,如果是,先往答案头部追加一个负号 -;

两者范围为 int,但计算结果可以会超过 int 范围,考虑 numerator = -2^{31}和 denominator = -1的情况,其结果为 2^{31},超出 int 的范围 [-2^{31}, 2^{31} - 1]。因此起始需要先使用 long 对两个入参类型转换一下。

class Solution {
    public String fractionToDecimal(int numerator, int denominator) {
        // 转 long 计算,防止溢出
        long a = numerator, b = denominator;
        // 如果本身能够整除,直接返回计算结果
        if (a % b == 0) return String.valueOf(a / b);
        StringBuilder sb = new StringBuilder();
        // 如果其一为负数,先追加负号
        if (a * b < 0) sb.append('-');
        a = Math.abs(a); b = Math.abs(b);
        // 计算小数点前的部分,并将余数赋值给 a
        sb.append(String.valueOf(a / b) + ".");
        a %= b;
        Map<Long, Integer> map = new HashMap<>();
        while (a != 0) {
            // 记录当前余数所在答案的位置,并继续模拟除法运算
            map.put(a, sb.length());
            a *= 10;
            sb.append(a / b);
            a %= b;
            // 如果当前余数之前出现过,则将 [出现位置 到 当前位置] 的部分抠出来(循环小数部分)
            if (map.containsKey(a)) {
                int u = map.get(a);
                return String.format("%s(%s)", sb.substring(0, u), sb.substring(u));
            }
        }
        return sb.toString();
    }
}

时间复杂度:O(M)

空间复杂度:O(M)

方法一:模拟竖式计算(Go)

具体的方法详情已经在上文中表述,详情请看上文。

func fractionToDecimal(numerator, denominator int) string {
    if numerator%denominator == 0 {
        return strconv.Itoa(numerator / denominator)
    }

    s := []byte{}
    if numerator < 0 != (denominator < 0) {
        s = append(s, '-')
    }

    // 整数部分
    numerator = abs(numerator)
    denominator = abs(denominator)
    integerPart := numerator / denominator
    s = append(s, strconv.Itoa(integerPart)...)
    s = append(s, '.')

    // 小数部分
    indexMap := map[int]int{}
    remainder := numerator % denominator
    for remainder != 0 && indexMap[remainder] == 0 {
        indexMap[remainder] = len(s)
        remainder *= 10
        s = append(s, '0'+byte(remainder/denominator))
        remainder %= denominator
    }
    if remainder > 0 { // 有循环节
        insertIndex := indexMap[remainder]
        s = append(s[:insertIndex], append([]byte{'('}, s[insertIndex:]...)...)
        s = append(s, ')')
    }

    return string(s)
}

func abs(x int) int {
    if x < 0 {
        return -x
    }
    return x
}

时间复杂度:O(M)

空间复杂度:O(M)

总结

到此这篇关于Go和Java算法详析之分数到小数的文章就介绍到这了,更多相关Go Java分数到小数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Go和Java算法详析之分数到小数

    目录 分数到小数 方法一:模拟竖式计算(Java) 方法一:模拟竖式计算(Go) 总结 分数到小数 给定两个整数,分别表示分数的分子 numerator 和分母 denominator,以 字符串形式返回小数 . 如果小数部分为循环小数,则将循环的部分括在括号内. 如果存在多个答案,只需返回 任意一个 . 对于所有给定的输入,保证 答案字符串的长度小于 104 . 示例 1: 输入:numerator = 1, denominator = 2 输出:"0.5" 示例 2: 输入:num

  • java 算法之归并排序详解及实现代码

    java 算法之归并排序详解 一.思想 归并排序:将一个数组排序,可以先(递归地)将它分成两半部份分别排序,然后将结果归并起来: 二.概念 归并:将两个有序的数组归并成一个更大的有序数组: 三.特点 优点:能够保证将任意长度为N的数组排序所需要的时间和NlogN成正比: 缺点:需要额外的空间和N成正比: 四.实现方法 将两个不同的有序数组归并到第三个数组中: 先将前半部分排序,在将后半部分排序,然后在数组中移动元素而不需要使用额外的空间: 五.代码 /** * 归并排序 * * @author

  • java 中归并排序算法详解

    java 中归并排序算法详解 归并排序算法,顾名思义,是一种先分再合的算法,其算法思想是将要排序的数组分解为单个的元素,每个元素就是一个单个的个体,然后将相邻的两个元素进行从小到大或从大到小的顺序排序组成一个整体,每个整体包含一到两个元素,然后对相邻的整体继续"合"并,因为每个整体都是排过序的,因而可以采用一定的算法对其进行合并,合并之后每个整体包含三到四个元素,继续对相邻的整体进行合并,直到所有的整体都合并为一个整体,最终得到的整体就是将原数组进行排序之后的结果. 对于相邻的整体,其

  • java 算法之冒泡排序实例详解

    java 算法之冒泡排序实例详解 无人不知无人不晓的冒泡排序,据说是模仿泡泡从水中浮起跑到水面的过程. 在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒.即: 每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换. 来看一下代码: package cn.songxinqiang.study.algorithm.sort; import java.util.Arrays; /** * 冒泡排序 * * <p>

  • java算法之二分查找法的实例详解

    java算法之二分查找法的实例详解 原理 假定查找范围为一个有序数组(如升序排列),要从中查找某一元素,如果该元素在此数组中,则返回其索引,否则返回-1.通过数组长度可取出中间位置元素的索引,将其值与目标值比较,如果中间位置元素值大于目标值,则在左部分进行查找,如果中间位置值小于目标值,则在右部分进行查找,如此循环,直到结束.二分查找算法之所以快是因为它没有遍历数组的每个元素,而仅仅是查找部分元素就能找到目标或确定其不存在,当然前提是查找范围为有序数组. Java的简单实现 package me

  • Java语言实现快速幂取模算法详解

    快速幂取模算法的引入是从大数的小数取模的朴素算法的局限性所提出的,在朴素的方法中我们计算一个数比如5^1003%31是非常消耗我们的计算资源的,在整个计算过程中最麻烦的就是我们的5^1003这个过程 缺点1:在我们在之后计算指数的过程中,计算的数字不都拿得增大,非常的占用我们的计算资源(主要是时间,还有空间) 缺点2:我们计算的中间过程数字大的恐怖,我们现有的计算机是没有办法记录这么长的数据的,所以说我们必须要想一个更加高效的方法来解决这个问题 当我们计算AB%C的时候,最便捷的方法就是调用Ma

  • Java垃圾回收之分代收集算法详解

    概述 这种算法,根据对象的存活周期的不同将内存划分成几块,新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法.可以用抓重点的思路来理解这个算法. 新生代对象朝生夕死,对象数量多,只要重点扫描这个区域,那么就可以大大提高垃圾收集的效率.另外老年代对象存储久,无需经常扫描老年代,避免扫描导致的开销. 新生代 在新生代,每次垃圾收集器都发现有大批对象死去,只有少量存活,采用复制算法,只需要付出少量存活对象的复制成本就可以完成收集:可以参看我之前写的Java垃圾回收之复制算法详解 老年代

  • Java垃圾回收之复制算法详解

    之前的Java垃圾回收之标记清除算法详解 会导致内存碎片.下文的介绍的coping算法可以解决内存碎片问题. 概述 如果jvm使用了coping算法,一开始就会将可用内存分为两块,from域和to域, 每次只是使用from域,to域则空闲着.当from域内存不够了,开始执行GC操作,这个时候,会把from域存活的对象拷贝到to域,然后直接把from域进行内存清理. 应用场景 coping算法一般是使用在新生代中,因为新生代中的对象一般都是朝生夕死的,存活对象的数量并不多,这样使用coping算法

  • Java垃圾回收机制算法详解

    概述 Java GC(Garbage Collection,垃圾回收)机制,是Java与C++/C的主要区别之一,作为Java开发者,一般不需要专门编写内存回收和垃圾清理代码,对内存泄露和溢出的问题,也不需要像C程序员那样战战兢兢.这是因为在Java虚拟机中,存在自动内存管理和垃圾清扫机制.概括地说,该机制对JVM中的内存进行标记,并确定哪些内存需要回收,根据一定的回收策略,自动的回收内存,永不停息的保证JVM中的内存空间,防止出现内存泄露和溢出问题. 在真实工作中的项目中,时不时的会发生内存溢

  • Java实现权重随机算法详解

    目录 应用场景 本文目标 算法详解 权重比例 Java 实现 参考 应用场景 客户端负载均衡,例如 Nacos 提供的客户端负载均衡就是使用了该算法 游戏抽奖(普通道具的权重很高,稀有道具的权重很低) 本文目标 Java 实现权重随机算法 算法详解 比如我们现在有三台 Server,权重分别为1,3,2.现在想对三台 Server 做负载均衡 Server1 Server2 Server3 weight weight weight 1 3 2 权重比例 我们算出每台 Server 的权重比例,权

随机推荐