Python绘制词云图之可视化神器pyecharts

目录
  • 词云图
  • 词云图系列模板
    • 固定模式词云图
    • 自定义文字样式
    • 一键化词云案例

词云图

什么是词云图,相信大家肯定不会感到陌生,一本书统计里面出现的词频,然后可视化展示,让读者快速的了解这个主题纲要,这就是词云的直接效果。

词云图系列模板

固定模式词云图

修改一些参数可以修改词云的轮廓,我觉得这个是最方便的词云,一键化不需要你去找其他的底图,设置一些参数。

shape词云图轮廓,有’circle’, ‘cardioid’, ‘diamond’, ‘triangleforward’, ‘triangle’, ‘pentagon’, ‘star’可选

import pyecharts.options as opts
from pyecharts.charts import WordCloud
#省略部分数据
data = [
("生活资源", "999"),
("供热管理", "888"),
("供气质量", "777"),
("生活用水管理", "688"),
("一次供水问题", "588"),

]
(
WordCloud()
.add(series_name="热点分析", data_pair=data, word_size_range=[6, 66])
.set_global_opts(
title_opts=opts.TitleOpts(
title="热点分析", title_textstyle_opts=opts.TextStyleOpts(font_size=23)
),
tooltip_opts=opts.TooltipOpts(is_show=True),
)
.render("词云图.html")
)

自定义文字样式

from pyecharts import options as opts
from pyecharts.charts import WordCloud
words = [
("花鸟市场", 1446),
("汽车", 928),

]
c = (
WordCloud()
.add(
"",
words,
word_size_range=[20, 100],
textstyle_opts=opts.TextStyleOpts(font_family="cursive"),
)
.set_global_opts(title_opts=opts.TitleOpts(title="WordCloud-自定义文字样式"))
.render("自定义文字样式.html")
)

一键化词云案例

(输入文本储存路径即可一键化生成词云图!!!!)

我们知道pyecharts里面需要填写数据,那么首先就必须分词,之前我写过一个智能分词程序,一键化只需要把文本放入即可,下面送给大家。

from pyecharts import options as opts
from pyecharts.charts import WordCloud
from pyecharts.globals import SymbolType
import jieba # jieba用于分词,中文字典及其强大
def main():
try:
print("C:\\Users\\48125\\Desktop\\")
title = input("请输入文本文件的路径及名称(注意不要写错了!):")
Open(title)
print("\n分词完毕!")
print('''\n\n\t 一键词云算法生成器
\t1--生成一词组的词云图
\t2--生成二词组的词云图
\t3--生成三词组的词云图
\t4--生成四词组的词云图
\t5--生成大于1词组的词云图(研究常用)
\t6--生成全部词组的词云图(包含所有类型的词组)
''')
num = int(input("请输入本次展示的词语数量(最好不超过100):"))
data = sort()[:num]
Str = input("请输入这个词云图的标题:")
print("词云图已经生成完毕,请查收!")
print("感谢您对本程序的使用,欢迎下次光临!!")
c = (
WordCloud()
.add(
"",
data, # 数据集
word_size_range=[20, 100], # 单词字体大小范围
shape=SymbolType.DIAMOND) # 词云图轮廓,有以下的轮廓选择,但是对于这个版本的好像只有在提示里面选
# circl,cardioid,diamond,triangle-forward,triangle,start,pentagon
.set_global_opts(title_opts=opts.TitleOpts(title="{}".format(Str)),
toolbox_opts=opts.ToolboxOpts()) # 工具选项
.render("{}词云制作{}词组.html".format(title, choice))
)
return c
except:
print("无法找到,请检查你的输入!")
if __name__ == "__main__":
main()

到此这篇关于Python绘制词云图之可视化神器pyecharts的文章就介绍到这了,更多相关Python pyecharts内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python+Pyecharts实现散点图的绘制

    目录 第1关:Scatter:散点图(一) 编程要求 代码 测试说明 第2关:Scatter:散点图(二) 编程要求 代码 测试说明 第3关:Scatter:散点图(三) 编程要求 代码 测试说明 第1关:Scatter:散点图(一) 编程要求 根据以上介绍,在右侧编辑器补充代码,绘制给定数据的散点图,要求: 画布大小初始化为宽 1600 像素,高 1000 像素 X 轴数据设置为 x_data 添加 Y 轴数据.系列名称设置为空,数据使用 y_data,标记的大小设置为20,不显示标签 X 轴

  • Python pyecharts绘制折线图详解

    一.绘制折线图 import seaborn as sns import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False

  • Python Pyecharts绘制桑基图分析用户行为路径

    目录 读取数据 生成节点数据 组织数据:定义节点和流量 数据可视化 桑基图,它的核心是对不同点之间,通过线来连接.线的粗细代表流量的大小.很多工具都能实现桑基 图,比如:Excel.tableau,我们今天要用 Pyecharts 来绘制. 因为没有用户行为路径相关的公开数据,所以本次实现可视化是根据泰坦尼克号,其生存与遇难的人的 数据,来分析流向路径.学会思路,你也可以换成自己公司的用户行为埋点数据. 读取数据 数据来源:https://www.kaggle.com/c/titanic fro

  • Python pyecharts数据可视化实例详解

    目录 一.数据可视化 1.pyecharts介绍 2.初入了解 (1).快速上手 (2).简单的配置项介绍 3.案例实战 (1).柱状图Bar (2).地图Map (3).饼图Pie (4).折线图Line (5).组合图表 二.案例数据获取 总结 一.数据可视化 1.pyecharts介绍 官方网址:https://pyecharts.org/#/zh-cn/intro 概况: Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,使用JavaScript实现的.

  • Python pyecharts绘制词云图代码

    目录 一.pyecharts绘制词云图WordCloud.add()方法简介 二.绘制词云图对应轮廓按diamond显示 三.对应完整代码如下所示 一.pyecharts绘制词云图WordCloud.add()方法简介 WordCloud.add()方法简介: add(name,attr,value, shape="circle", word_gap=20, word_size_range=None, rotate_step=45) name str 图例名称 attr list 属性

  • Python绘制词云图之可视化神器pyecharts的方法

    自定义图片生成词云图的多种方法 有时候我们会根据具体的场景来结合图片展示词云,比如我分析的是美团评论,那么最好的展示方法就是利用美团的logo来做词云图的底图展示,下面我们就介绍几种常用的方法! 根据喜爱的图片生成词云轮廓 from wordcloud import WordCloud import jieba import matplotlib.pyplot as plt import numpy as np import PIL.Image as Image text = open(u'da

  • Python+pyecharts绘制交互式可视化图表

    目录 一.热力图 二.地理图表 2.1 地理坐标系 2.2 市区地图 2.3人口流动图 2.4 3D地图 2.5 3D地球 三.疫情数据可视化 四.空气质量数据可视化 五.外卖点分布数据可视化 六.总结 本篇我们来了解一个新的可视化模块pyecharts,由于爬虫敏感问题,博主对数据已经提取供大家使用,本篇文章仅介绍数据可视化. 一.热力图 案例:绘制2021部分城市的GDP热力图(比如上海,北京,深圳,重庆,长沙的2021年总GDP),data为一个列表,每个城市数据用元祖表示,比如:(‘上海

  • Python pyecharts实时画图自定义可视化经纬度热力图

    目录 背景 基于pyecharts内置经纬度的热力图 基于自定义经纬度的热力图 pyecharts库缺点 不同地图坐标系区别 WGS-84 - 世界大地测量系统 GCJ-02 - 国测局坐标 BD-09 - 百度坐标系 背景 在业务数据统计分析中基本都会涉及到各省区的分析,数据可视化是数据分析的一把利器,这些省区的数据一般会用地图可视化出来,这样一些规律可以被一面了然发现 地图有很多可视化类型,比如:基本地理图.热力图.路径图.涟漪图 等,本篇文章主要介绍 热力图,使用的工具百度开源 pyech

  • Python绘制词云图之可视化神器pyecharts

    目录 词云图 词云图系列模板 固定模式词云图 自定义文字样式 一键化词云案例 词云图 什么是词云图,相信大家肯定不会感到陌生,一本书统计里面出现的词频,然后可视化展示,让读者快速的了解这个主题纲要,这就是词云的直接效果. 词云图系列模板 固定模式词云图 修改一些参数可以修改词云的轮廓,我觉得这个是最方便的词云,一键化不需要你去找其他的底图,设置一些参数. shape词云图轮廓,有’circle’, ‘cardioid’, ‘diamond’, ‘triangleforward’, ‘triang

  • 使用Python轻松实现绘制词云图项目(附详细源码)

    目录 项目背景 项目实操 一.一般词云绘制 二.根据词频绘制词云 结 语 项目背景 虽然现在已经有很多现成的制作词云图的工具了,但一般存在以下几个问题: 问题一:工具太多,眼花缭乱,质量参差不齐,选择困难症: 问题二:大多词云工具或多或少有一些限制,自定义的空间有限: 问题三:有些工具甚至收费. 基于以上几个问题,觉得有必要写一篇Python绘制词云图的文章,因为实在太简单!没有任何编程基础的小白都能搞定的事,还找什么工具啊! OK,FINE.咱不废话,直接实操. 项目实操 一.一般词云绘制 制

  • Python绘制K线图之可视化神器pyecharts的使用

    K线图 概念 股市及期货市bai场中的K线图的du画法包含四个zhi数据,即开盘dao价.最高价.最低价zhuan.收盘价,所有的shuk线都是围绕这四个数据展开,反映大势的状况和价格信息.如果把每日的K线图放在一张纸上,就能得到日K线图,同样也可画出周K线图.月K线图.研究金融的小伙伴肯定比较熟悉这个,那么我们看起来比较复杂的K线图,又是这样画出来的,本文我们将一起探索K线图的魅力与神奇之处吧! K线图 用处 K线图用处于股票分析,作为数据分析,以后的进入大数据肯定是一个趋势和热潮,K线图的专

  • Python 数据可视化神器Pyecharts绘制图像练习

    目录 前言: 1.Hive数据库查询sql 2.Python代码实现—柱状图 3.Python代码实现—饼状图 4.Python代码实现—箱型图 5.Python代码实现—折线图 6.Python代码实现—雷达图 7.Python代码实现—散点图 前言: Echarts 是百度开源的一款数据可视化 JS 工具,数据可视化类型十分丰富,但是得通过导入 js 库在 Java Web 项目上运行. 作为工作中常用 Python 的选手,不能不知道这款数据可视化插件的强大.那么,能否在 Python 中

  • Python绘制地理图表可视化神器pyecharts

    目录 地图 地图模板系列 中国地图 省份数据地图(重庆地图) 中国城市地图数据地图(分段型) 世界地图 中国地图带城市(详细) 中国连续数据地图 复杂地图观赏 地图 这期文章我们一起来看看地图是如何绘制的,如何在地图里面添加数据进行多维度的展示,下面我们一起来感受一下地图的魅力吧! “地图就是依据一定的数学法则,使用制图语言,通过制图综合,在一定的载体上,表达地球(或其他天体)上各种事物的空间分布.联系及时间中的发展变化状态的图形. 地图的特征包括:由于特殊的数学法则而产生的可量测性:由于使用符

  • Python绘制折线图可视化神器pyecharts案例

    目录 前言 折线图模板系列 自定义标签数据折线图 一天用电量折线图(特定场景) 断点折线图(根据场景进行配置) 双折线图显示最低最高数据标签(不显示其他数据标签) 双折线图显示平均刻度数据标签(数据可显示) 断点折线图(显示数据项) 面积折线图(不紧贴) 3D旋转弹簧图 前言 相信有很多的小伙伴看了如此多个案例之后肯定有所发现,每一个案例都对应着每一个配置,如果是官方配置文档,说实话看起来真的很难,这样通过案例实现来解决各种参数的配置,我觉得有一定的参考价值和学习意义,正所谓“磨刀不误砍工”,如

  • Python可视化神器pyecharts绘制柱状图

    目录 主题介绍 图表参数 主题详解 柱状图模板系列 海量数据柱状图动画展示 收入支出柱状图(适用于记账) 三维数据叠加 柱状图与折线图多维展示(同屏展示) 单列多维数据展示 3D柱状图 主题介绍 pyecharts里面有很多的主题可以供我们选择,我们可以根据自己的需要完成主题的配置,这样就告别了软件的限制,可以随意的发挥自己的艺术细胞了. 图表参数 ''' def add_yaxis( # 系列名称,用于 tooltip 的显示,legend 的图例筛选. series_name: str, #

  • Python可视化神器pyecharts绘制漏斗图

    目录 漏斗图 漏斗图系列模板 尖顶型漏斗图 锥子型漏斗 三角形漏斗 连接型漏斗 漏斗图 漏斗图是由Light等在1984年提出,一般以单个研究的效应量为横坐标,样本含量为纵坐标做的散点图.效应量可以为RR.OR和死亡比或者其对数值等.理论上讲,被纳入Meta分析的各独立研究效应的点估计,在平面坐标系中的集合应为一个倒置的漏斗形,因此称为漏斗图. 样本量小,研究精度低,分布在漏斗图的底部,向周围分散: 样本量大,研究精度高,分布在漏斗图的顶部,向中间集中. 漏斗图法的优点是: 简单易行,只需要被纳

随机推荐