Caffe卷积神经网络solver及其配置详解

目录
  • 引言
  • Solver的流程:

引言

solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为

# caffe train --solver=*_slover.prototxt

在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法。

到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。

  • Stochastic Gradient Descent (type: "SGD"),
  • AdaDelta (type: "AdaDelta"),
  • Adaptive Gradient (type: "AdaGrad"),
  • Adam (type: "Adam"),
  • Nesterov’s Accelerated Gradient (type: "Nesterov") and
  • RMSprop (type: "RMSProp")

具体的每种方法的介绍,请看本系列的下一篇文章, 本文着重介绍solver配置文件的编写。

Solver的流程:

1.     设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络。(通过调用另外一个配置文件prototxt来进行)

2.     通过forward和backward迭代的进行优化来跟新参数。

3.     定期的评价测试网络。 (可设定多少次训练后,进行一次测试)

4.     在优化过程中显示模型和solver的状态

在每一次的迭代过程中,solver做了这几步工作:

1、调用forward算法来计算最终的输出值,以及对应的loss

2、调用backward算法来计算每层的梯度

3、根据选用的slover方法,利用梯度进行参数更新

4、记录并保存每次迭代的学习率、快照,以及对应的状态。

接下来,我们先来看一个实例:

net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 0.01
momentum: 0.9
type: SGD
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 20000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver_mode: CPU

接下来,我们对每一行进行详细解译:

net: "examples/mnist/lenet_train_test.prototxt"

设置深度网络模型。每一个模型就是一个net,需要在一个专门的配置文件中对net进行配置,每个net由许多的layer所组成。每一个layer的具体配置方式可参考本系列文文章中的(2)-(5)。注意的是:文件的路径要从caffe的根目录开始,其它的所有配置都是这样。

也可用train_net和test_net来对训练模型和测试模型分别设定。例如:

train_net: "examples/hdf5_classification/logreg_auto_train.prototxt"
test_net: "examples/hdf5_classification/logreg_auto_test.prototxt"

接下来第二行:

test_iter: 100

这个要与test layer中的batch_size结合起来理解。mnist数据中测试样本总数为10000,一次性执行全部数据效率很低,因此我们将测试数据分成几个批次来执行,每个批次的数量就是batch_size。假设我们设置batch_size为100,则需要迭代100次才能将10000个数据全部执行完。因此test_iter设置为100。执行完一次全部数据,称之为一个epoch

test_interval: 500

测试间隔。也就是每训练500次,才进行一次测试。

base_lr: 0.01
lr_policy: "inv"
gamma: 0.0001
power: 0.75

这四行可以放在一起理解,用于学习率的设置。只要是梯度下降法来求解优化,都会有一个学习率,也叫步长。base_lr用于设置基础学习率,在迭代的过程中,可以对基础学习率进行调整。怎么样进行调整,就是调整的策略,由lr_policy来设置。

lr_policy可以设置为下面这些值,相应的学习率的计算为:

  • - fixed:   保持base_lr不变.
  • - step:    如果设置为step,则还需要设置一个stepsize,  返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
  • - exp:     返回base_lr * gamma ^ iter, iter为当前迭代次数
  • - inv:      如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
  • - multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据                                 stepvalue值变化
  • - poly:     学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
  • - sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))

multistep示例:

base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "multistep"
gamma: 0.9
stepvalue: 5000
stepvalue: 7000
stepvalue: 8000
stepvalue: 9000
stepvalue: 9500

接下来的参数:

momentum :0.9

上一次梯度更新的权重,具体可参看下一篇文章。

type: SGD

优化算法选择。这一行可以省掉,因为默认值就是SGD。总共有六种方法可选择,在本文的开头已介绍。

weight_decay: 0.0005

权重衰减项,防止过拟合的一个参数。

display: 100

每训练100次,在屏幕上显示一次。如果设置为0,则不显示。

max_iter: 20000

最大迭代次数。这个数设置太小,会导致没有收敛,精确度很低。设置太大,会导致震荡,浪费时间。

snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"

快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存,默认为0,不保存。snapshot_prefix设置保存路径。

还可以设置snapshot_diff,是否保存梯度值,默认为false,不保存。

也可以设置snapshot_format,保存的类型。有两种选择:HDF5 和BINARYPROTO ,默认为BINARYPROTO

solver_mode: CPU

设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。

注意:以上的所有参数都是可选参数,都有默认值。根据solver方法(type)的不同,还有一些其它的参数,在此不一一列举。

以上就是Caffe卷积神经网络solver及其配置详解的详细内容,更多关于Caffe solver配置的资料请关注我们其它相关文章!

(0)

相关推荐

  • caffe的python接口生成solver文件详解学习

    目录 solver.prototxt的文件参数设置 生成solver文件 简便的方法 训练模型(training) solver.prototxt的文件参数设置 caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面,如下: base_lr: 0.001display: 782gamma: 0.1lr_policy: “step”max_iter: 78200momentum: 0.9snapshot: 7820snapshot_pref

  • Caffe数据可视化环境python接口配置教程示例

    目录 引言 一.安装python和pip 二.安装pyhon接口依赖库 三.利用anaconda来配置python环境 四.编译python接口 五.安装jupyter 引言 caffe程序是由c++语言写的,本身是不带数据可视化功能的.只能借助其它的库或接口,如opencv, python或matlab.大部分人使用python接口来进行可视化,因为python出了个比较强大的东西:ipython notebook, 现在的最新版本改名叫jupyter notebook,它能将python代码

  • Caffe卷积神经网络数据层及参数

    目录 引言 数据层 1.数据来自于数据库(如LevelDB和LMDB) 2.数据来自于内存 3.数据来自于HDF5 4.数据来自于图片 5.数据来源于Windows 引言 要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成.所有的参数都定义在caffe.proto这个文件中.要熟练使用caffe,最重要的就是学会配置文件(prototxt)的编写. 层有很多种类型,比如Data,Convoluti

  • python格式的Caffe图片数据均值计算学习

    目录 引言 一.二进制格式的均值计算 二.python格式的均值计算 引言 图片减去均值后,再进行训练和测试,会提高速度和精度.因此,一般在各种模型中都会有这个操作. 那么这个均值怎么来的呢,实际上就是计算所有训练样本的平均值,计算出来后,保存为一个均值文件,在以后的测试中,就可以直接使用这个均值来相减,而不需要对测试图片重新计算. 一.二进制格式的均值计算 caffe中使用的均值数据格式是binaryproto, 作者为我们提供了一个计算均值的文件compute_image_mean.cpp,

  • caffe的python接口之手写数字识别mnist实例

    目录 引言 一.数据准备 二.导入caffe库,并设定文件路径 二.生成配置文件 三.生成参数文件solver 四.开始训练模型 五.完成的python文件 引言 深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 视觉层及参数 solver配置文件及参数 一.数据准备 官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片.因此有些

  • Caffe图像数据转换成可运行leveldb lmdb文件

    目录 引言 该文件的使用格式 调用linux命令生成图片清单 FLAGS参数组 最后运行脚本文件 引言 在深度学习的实际应用中,我们经常用到的原始数据是图片文件,如jpg,jpeg,png,tif等格式的,而且有可能图片的大小还不一致. 而在caffe中经常使用的数据类型是lmdb或leveldb,因此就产生了这样的一个问题:如何从原始图片文件转换成caffe中能够运行的db(leveldb/lmdb)文件? 在caffe中,作者为我们提供了这样一个文件:convert_imageset.cpp

  • Caffe卷积神经网络视觉层Vision Layers及参数详解

    目录 引言 1.Convolution层: 2.Pooling层 3.Local Response Normalization (LRN)层 4.im2col层 引言 所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe卷积神经网络数据层及参数 本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling,Local Response Normalization (LRN

  • Caffe卷积神经网络solver及其配置详解

    目录 引言 Solver的流程: 引言 solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover.prototxt 在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解.solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上

  • TensorFlow卷积神经网络AlexNet实现示例详解

    2012年,Hinton的学生Alex Krizhevsky提出了深度卷积神经网络模型AlexNet,它可以算是LeNet的一种更深更宽的版本.AlexNet以显著的优势赢得了竞争激烈的ILSVRC 2012比赛,top-5的错误率降低至了16.4%,远远领先第二名的26.2%的成绩.AlexNet的出现意义非常重大,它证明了CNN在复杂模型下的有效性,而且使用GPU使得训练在可接受的时间范围内得到结果,让CNN和GPU都大火了一把.AlexNet可以说是神经网络在低谷期后的第一次发声,确立了深

  • PyTorch快速搭建神经网络及其保存提取方法详解

    有时候我们训练了一个模型, 希望保存它下次直接使用,不需要下次再花时间去训练 ,本节我们来讲解一下PyTorch快速搭建神经网络及其保存提取方法详解 一.PyTorch快速搭建神经网络方法 先看实验代码: import torch import torch.nn.functional as F # 方法1,通过定义一个Net类来建立神经网络 class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output):

  • 对Pytorch神经网络初始化kaiming分布详解

    函数的增益值 torch.nn.init.calculate_gain(nonlinearity, param=None) 提供了对非线性函数增益值的计算. 增益值gain是一个比例值,来调控输入数量级和输出数量级之间的关系. fan_in和fan_out pytorch计算fan_in和fan_out的源码 def _calculate_fan_in_and_fan_out(tensor): dimensions = tensor.ndimension() if dimensions < 2:

  • Python卷积神经网络图片分类框架详解分析

    [人工智能项目]卷积神经网络图片分类框架 本次硬核分享当时做图片分类的工作,主要是整理了一个图片分类的框架,如果想换模型,引入新模型,在config中修改即可.那么走起来瓷!!! 整体结构 config 在config文件夹下的config.py中主要定义数据集的位置,训练轮数,batch_size以及本次选用的模型. # 定义训练集和测试集的路径 train_data_path = "./data/train/" train_anno_path = "./data/trai

  • Python机器学习应用之基于BP神经网络的预测篇详解

    目录 一.Introduction 1 BP神经网络的优点 2 BP神经网络的缺点 二.实现过程 1 Demo 2 基于BP神经网络的乳腺癌分类预测 三.Keys 一.Introduction 1 BP神经网络的优点 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数.这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力. 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输

  • python神经网络Xception模型复现详解

    目录 什么是Xception模型 Xception网络部分实现代码 图片预测 Xception是继Inception后提出的对Inception v3的另一种改进,学一学总是好的 什么是Xception模型 Xception是谷歌公司继Inception后,提出的InceptionV3的一种改进模型,其改进的主要内容为采用depthwise separable convolution来替换原来Inception v3中的多尺寸卷积核特征响应操作. 在讲Xception模型之前,首先要讲一下什么是

  • python神经网络InceptionV3模型复现详解

    目录 神经网络学习小记录21——InceptionV3模型的复现详解 学习前言什么是InceptionV3模型InceptionV3网络部分实现代码图片预测 学习前言 Inception系列的结构和其它的前向神经网络的结构不太一样,每一层的内容不是直直向下的,而是分了很多的块. 什么是InceptionV3模型 InceptionV3模型是谷歌Inception系列里面的第三代模型,其模型结构与InceptionV2模型放在了同一篇论文里,其实二者模型结构差距不大,相比于其它神经网络模型,Inc

  • python神经网络Densenet模型复现详解

    目录 什么是Densenet Densenet 1.Densenet的整体结构 2.DenseBlock 3.Transition Layer 网络实现代码 什么是Densenet 据说Densenet比Resnet还要厉害,我决定好好学一下. ResNet模型的出现使得深度学习神经网络可以变得更深,进而实现了更高的准确度. ResNet模型的核心是通过建立前面层与后面层之间的短路连接(shortcuts),这有助于训练过程中梯度的反向传播,从而能训练出更深的CNN网络. DenseNet模型,

随机推荐