详解Python中的普通函数和高阶函数

目录
  • 什么是函数
  • 函数的嵌套调用
    • 高阶函数
  • 我们思考一下计算圆形和方形的面积
    • 为何高阶函数能够降低维度
  • 总结

什么是函数

每个语言都有函数,甚至大家用的Excel里面也有函数,我们以前学习的数学也很多各种各样的函数。

Python中的函数也是一样的。

def f(x):
    print("参数为:",x)
    return x

这里的函数 y = f(x), 在数学中表示为一条斜率为1的直线。

函数的嵌套调用

def z(x):
    pass
def f(x):
    print("参数为:",x)
    return z(x)

像这样,我们在f(x)中调用了z(x)函数(这里使用了pass关键字,实现先不写,仅作展示目的)

我们能不能不定义z(x)就定义一个函数调用别的函数呢?

就像实现一个数的平方,函数的‘平方',大概这个意思。

高阶函数

def f(z):
    return z()

这就是高阶函数,f函数需要外界提供一个参数,这个参数必须是一个函数。

在使用f(z)的时候,我们不能给一个f(2), f(3)这样的值。或者有个函数如d(x)返回非函数值结果,我们不能这样调用:f(d(1))。

学委准备了下面的代码,从简单函数逐步演化为高阶函数:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2021/10/24 11:39 下午
# @Author : LeiXueWei
# @CSDN/Juejin/Wechat: 雷学委
# @XueWeiTag: CodingDemo
# @File : func_demo2.py
# @Project : hello
def f1(x):
    return x
def f2(x, z=100):
    return x + z / 10
def f3(x, z=100, *dynamic_args):
    sum = 0
    for arg in dynamic_args:
        sum += arg
    return x + z / 10 + sum / 10000.0
def dummy_sum(*args):
    return 0
def f4(x, z=100, sum_func=dummy_sum):
    return x + z / 10 + sum_func() / 10000.0
print(f1(100))
print(f2(100, z=50))
print(f3(100, 50, 4, 5, 6))
def sum_g(*dynamic_args):
    def sum_func():
        sum = 0
        for arg in dynamic_args:
            sum += arg
        return sum
    return sum_func
print(f4(100, 50, sum_g(4, 5, 6)))

这里我们看到函数f1, f2, f3, f4。

补充一个知识点: *dynamic_args 是一个动态参数,不定长度的参数。
也就是f3明明声明了3个参数,最后我们给了5个参数。
这里f3认为x=100, z=50, dynamic_args = [4, 5, 6]

我们先看看输出结果:

f3 和f4 看起来结果一样。

但是性质完整不一样,读者可以思考十秒。

f4弹性非常大,因为第三个参数为函数。

高阶函数可以帮助我们把计算‘降维'(三维变成二维,二维变一维)。

我们思考一下计算圆形和方形的面积

相信大家闭着眼都能写出下面两个函数:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2021/10/24 11:39 下午
# @Author : LeiXueWei
# @CSDN/Juejin/Wechat: 雷学委
# @XueWeiTag: CodingDemo
# @File : func_demo2.py
# @Project : hello
import math
def circle_area(r):
    return math.pi * r * r
def rectangle_area(a, b):
    return a * b

这是圆形面积的数学公式:

f ( r ) = π ∗ r 2

这是矩形面积的数学公式:

f ( a , b ) = a ∗ b

我们看到这里有的有1个参数的,有的有两个的怎么变成高阶函数?

读者可以思考一会。

下面是代码:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2021/10/24 11:39 下午
# @Author : LeiXueWei
# @CSDN/Juejin/Wechat: 雷学委
# @XueWeiTag: CodingDemo
# @File : func_demo2.py
# @Project : hello
import math
def circle_area(r):
    return math.pi * r * r
def rectangle_area(a, b):
    return a * b
def area(x, linear, factor):
    return x * linear(x, factor)
def relation(x, factor):
    return x * factor
a = 10
b = 20
print("长方形面积:", rectangle_area(a, b))
print("圆形面积:", circle_area(a))
print("长方形面积:", area(a, relation, factor=b / a))
print("圆形面积:", area(a, relation, factor=math.pi))

结果如下图:

这只是一种解法。

从代码可以看到,我们把圆形和矩形都看作某一个参照物(半径/一条边)的平方,再成乘以一个系数。

下面,我们把正方形面积计算加上:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2021/10/24 11:39 下午
# @Author : LeiXueWei
# @CSDN/Juejin/Wechat: 雷学委
# @XueWeiTag: CodingDemo
# @File : func_demo2.py
# @Project : hello
import math
def circle_area(r):
    return math.pi * r * r
def square_area(a):
    return a * a
def rectangle_area(a, b):
    return a * b
def area(x, linear, factor):
    return x * linear(x, factor)
def relation(x, factor):
    return x * factor
a = 10
b = 20
print("长方形面积:", rectangle_area(a, b))
print("正方形面积:", square_area(a))
print("圆形面积:", circle_area(a))
print("长方形面积:", area(a, relation, factor=b / a))
print("正方形面积:", area(a, relation, factor=1))
print("圆形面积:", area(a, relation, factor=math.pi))

上面的代码执行结果如下:

这就是高阶函数的神奇之处,我们从正方形的角度思考。

只用一个area函数和relation函数,这两个函数都不必修改,只需要给一个factor(经验因子),就能快速计算它的面积。

为何高阶函数能够降低维度

从上面距离的计算面积的函数,我们可以看到计算圆形和长方形,都能看成一个一维函数。

然后以正方形面积为参照物,快速估算出圆形和方形的面积。

当然上面的计算圆形面积采用了半径,还不够直观,读者可以自行改为直径,这样factor = math.pi / 4。

这样在感受上会更贴切。

总结

除了上面介绍的函数,参数,高阶函数。我们还可以使用lambda函数:

lambda  参数1, 参数2,。。。,第n个参数 : 计算表达式

上面的函数relation函数可以省略不写,最后调用改为:

print("长方形面积:", area(a, lambda x, f: x * f, factor=b / a))
print("正方形面积:", area(a, lambda x, f: x * f, factor=1))
print("圆形面积:", area(a, lambda x, f: x * f, factor=math.pi))

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注我们的更多内容!

(0)

相关推荐

  • 深入了解python高阶函数编写与使用

    目录 1.变量可以指向函数 2.函数名也可以是变量. 3.传入函数 总结 何为高阶函数,以实际代码为例子一步步深入概念. 1.变量可以指向函数 以abs()为例: >>>abs(-10) 10 但是只写abs呢? >>>abs <built-in function abs> abs(-10)是调用函数而abs是函数本身 . 把函数本身赋给变量呢? >>>f=abs >>>f <built-in function ab

  • python 高阶函数简单介绍

    把函数作为参数传入,这样的函数称为高阶函数,高阶函数是函数式编程的体现.函数式编程就是指这种高度抽象的编程范式. 1.体验高阶函数 在Python中,abs()函数可以完成对数字求绝对值计算. abs(-10) # 10 round()函数可以完成对数字的四舍五入计算. round(1.2) # 1 round(1.9) # 2 需求:任意两个数字,按照指定要求整理数字后再进行求和计算. 方法1 def add_num(a, b): return abs(a) + abs(b) result =

  • 详解Python高阶函数

    本文要点 1.什么是高阶函数 2.python中有哪些常用的高阶函数 什么是高阶函数? 在了解什么是高阶函数之前,我们来看几个小例子.我们都知道在 python 中一切皆对象,函数也不例外.比如求绝对值函数 abs,我们可以用一个变量 f 指向 abs 函数,那么当调用 f() 的时候可以得到和 abs() 一样的效果,这说明变量可以指向函数! 同理我们将 abs 指向另一个函数 abs = len,那么 abs 将不再是求绝对值的函数了,abs指向的是求长度的 len 函数.这说明函数名其实就

  • Python 内置高阶函数详细

    目录 1.Python的内置高阶函数 1.1 map() 1.2 reduce() 函数 1.3 reduce() 函数 1.4 sorted() 函数 1.Python的内置高阶函数 1.1 map() map()会根据提供的函数对指定序列做映射 语法格式: map(function, iterable, ...) 第一个参数function以参数序列中的每一个元素调用function函数, 第二个参数iterable一个或多个序列 返回包含每次 function 函数返回值的新列表. 示例代

  • python中实现延时回调普通函数示例代码

    前言 回调函数是我们在python编程中经常会遇到的一个问题,而想在将来某一时刻进行函数回调,可以使用call_later()函数来实现,第一个参数是回调用延时,第二个是回调的函数名称 例子如下: import asyncio def callback(n): print('callback {} invoked'.format(n)) async def main(loop): print('registering callbacks') loop.call_later(0.2, callba

  • 详解Python中映射类型的内建函数和工厂函数

    1.基本函数介绍 (1)标准类型函数[type().str()和 cmp()]         对一个字典调用type()工厂方法,会返回字典类型:"<type 'dict'>".调用str()工厂方法将返回该字典的字符串表示形式.         字典是通过这样的算法来比较的:首先是字典的大小,然后是键,最后是值.可是用cmp()做字典的比较一般不是很有用. 算法按照以下的顺序: 首先比较字典长度         如果字典的长度不同,那么用cmp(dict1, dict2

  • 详解python中groupby函数通俗易懂

    一.groupby 能做什么? python中groupby函数主要的作用是进行数据的分组以及分组后地组内运算! 对于数据的分组和分组运算主要是指groupby函数的应用,具体函数的规则如下: df[](指输出数据的结果属性名称).groupby([df[属性],df[属性])(指分类的属性,数据的限定定语,可以有多个).mean()(对于数据的计算方式--函数名称) 举例如下: print(df["评分"].groupby([df["地区"],df["类

  • 详解python中的lambda与sorted函数

    lambda表达式 python中形如: lambda parameters: expression 称为lambda表达式,用于创建匿名函数,该表达式会产生一个函数对象. 该对象的行为类似于用以下方式定义的函数: def <lambda>(parameters): return expression python中的lambda函数可以接受任意数量的参数,但只能有一个表达式.也就是说,lambda表达式适用于表示内部仅包含1行表达式的函数.那么lambda表达式的优势就很明显了: 使用lam

  • 详解Python中常用的图片处理函数的使用

    目录 cvtColor函数 split()和merge() threshold()函数 自定义threshold函数进行二值化 色度函数applyColorMap cvtColor函数 这个函数有两个参数 1,src 要进行变换的原图像 2,code 转换代码标识 例子: import cv2 image=cv2.imread("ddd.jpg") image1=cv2.cvtColor(image,cv2.COLOR_BGR2BGRA) cv2.imshow(""

  • 一文详解Python中的Map,Filter和Reduce函数

    目录 1. 引言 2. 高阶函数 3. Lambda表达式 4. Map函数 5. Filter函数 6. Reduce函数 7. 总结 1. 引言 本文重点介绍Python中的三个特殊函数Map,Filter和Reduce,以及如何使用它们进行代码编程.在开始介绍之前,我们先来理解两个简单的概念高阶函数和Lambda函数. 2. 高阶函数 把函数作为参数传入,这样的函数称为高阶函数,函数式编程就是指这种高度抽象的编程范式. 举例如下: def higher(your_function, som

  • 详解Python中enumerate函数的使用

    Python 的 enumerate() 函数就像是一个神秘的黑箱,你无法简单地用一句话来概括这个函数的作用与用法. enumerate() 函数属于非常有用的高级用法,而对于这一点,很多初学者甚至中级学者都没有意识到.这个函数的基本应用就是用来遍历一个集合对象,它在遍历的同时还可以得到当前元素的索引位置. 我们看一个例子: names = ["Alice","Bob","Carl"] for index,value in enumerate(n

  • 详解Python中的普通函数和高阶函数

    目录 什么是函数 函数的嵌套调用 高阶函数 我们思考一下计算圆形和方形的面积 为何高阶函数能够降低维度 总结 什么是函数 每个语言都有函数,甚至大家用的Excel里面也有函数,我们以前学习的数学也很多各种各样的函数. Python中的函数也是一样的. def f(x): print("参数为:",x) return x 这里的函数 y = f(x), 在数学中表示为一条斜率为1的直线. 函数的嵌套调用 def z(x): pass def f(x): print("参数为:&

  • 详解python中 os._exit() 和 sys.exit(), exit(0)和exit(1) 的用法和区别

    详解python中 os._exit() 和 sys.exit(), exit(0)和exit(1) 的用法和区别 os._exit() 和 sys.exit() os._exit() vs sys.exit() 概述 Python的程序有两中退出方式:os._exit(), sys.exit().本文介绍这两种方式的区别和选择. os._exit()会直接将python程序终止,之后的所有代码都不会继续执行. sys.exit()会引发一个异常:SystemExit,如果这个异常没有被捕获,那

  • 详解 Python中LEGB和闭包及装饰器

    详解 Python中LEGB和闭包及装饰器 LEGB L>E>G?B L:local函数内部作用域 E:enclosing函数内部与内嵌函数之间 G:global全局作用域 B:build-in内置作用域 python 闭包 1.Closure:内部函数中对enclosing作用域变量的引用 2.函数实质与属性 函数是一个对象 函数执行完成后内部变量回收 函数属性 函数返回值 passline = 60 def func(val): if val >= passline: print (

  • 详解python中的 is 操作符

    大家可以与Java中的 == 操作符相互印证一下,加深一下对引用和对象的理解.原问题: Python为什么直接运行和在命令行运行同样语句但结果却不同,他们的缓存机制不同吗? 其实,高票答案已经说得很详细了.我只是再补充一点而已. is 操作符是Python语言的一个内建的操作符.它的作用在于比较两个变量是否指向了同一个对象. 与 == 的区别 class A(): def __init__(self, v): self.value = v def __eq__(self, t): return

随机推荐