Python周期任务神器之Schedule模块使用详解

目录
  • 1.准备
  • 2.基本使用
    • 参数传递
    • 获取目前所有的作业
    • 取消所有作业
    • 标签功能
    • 设定作业截止时间
    • 立即运行所有作业,而不管其安排如何
  • 3.高级使用
    • 装饰器安排作业
    • 并行执行
    • 日志记录
    • 异常处理

如果你想在Linux服务器上周期性地执行某个 Python 脚本,最出名的选择应该是 Crontab 脚本,但是 Crontab 具有以下缺点:

1.不方便执行秒级的任务。

2.当需要执行的定时任务有上百个的时候,Crontab的管理就会特别不方便

另外一个选择是 Celery,但是 Celery 的配置比较麻烦,如果你只是需要一个轻量级的调度工具,Celery 不会是一个好选择。

在你想要使用一个轻量级的任务调度工具,而且希望它尽量简单、容易使用、不需要外部依赖,最好能够容纳 Crontab 的所有基本功能,那么 Schedule 模块是你的不二之选。

使用它来调度任务可能只需要几行代码,感受一下:

import schedule
import time

def job():
    print("I'm working...")

schedule.every(10).minutes.do(job)

while True:
    schedule.run_pending()
    time.sleep(1)

上面的代码表示每10分钟执行一次 job 函数,非常简单方便。你只需要引入 schedule 模块,通过调用 scedule.every(时间数).时间类型.do(job) 发布周期任务。

发布后的周期任务需要用 run_pending 函数来检测是否执行,因此需要一个 While 循环不断地轮询这个函数。

下面具体讲讲Schedule模块的安装和初级、进阶使用方法。

1.准备

请选择以下任一种方式输入命令安装依赖:

1. Windows 环境 打开 Cmd (开始-运行-CMD)。

2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。

3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.

pip install schedule

2.基本使用

最基本的使用在文首已经提到过,下面给大家展示更多的调度任务例子:

import schedule
import time

def job():
    print("I'm working...")

# 每十分钟执行任务
schedule.every(10).minutes.do(job)
# 每个小时执行任务
schedule.every().hour.do(job)
# 每天的10:30执行任务
schedule.every().day.at("10:30").do(job)
# 每个月执行任务
schedule.every().monday.do(job)
# 每个星期三的13:15分执行任务
schedule.every().wednesday.at("13:15").do(job)
# 每分钟的第17秒执行任务
schedule.every().minute.at(":17").do(job)

while True:
    schedule.run_pending()
    time.sleep(1)

可以看到,从月到秒的配置,上面的例子都覆盖到了。不过如果你想只运行一次任务的话,可以这么配:

import schedule
import time

def job_that_executes_once():
    # 此处编写的任务只会执行一次...
    return schedule.CancelJob

schedule.every().day.at('22:30').do(job_that_executes_once)

while True:
    schedule.run_pending()
    time.sleep(1)

参数传递

如果你有参数需要传递给作业去执行,你只需要这么做:

import schedule

def greet(name):
    print('Hello', name)

# do() 将额外的参数传递给job函数
schedule.every(2).seconds.do(greet, name='Alice')
schedule.every(4).seconds.do(greet, name='Bob')

获取目前所有的作业

如果你想获取目前所有的作业:

import schedule

def hello():
    print('Hello world')

schedule.every().second.do(hello)

all_jobs = schedule.get_jobs()

取消所有作业

如果某些机制触发了,你需要立即清除当前程序的所有作业:

import schedule

def greet(name):
    print('Hello {}'.format(name))

schedule.every().second.do(greet)

schedule.clear()

标签功能

在设置作业的时候,为了后续方便管理作业,你可以给作业打个标签,这样你可以通过标签过滤获取作业或取消作业。

import schedule

def greet(name):
    print('Hello {}'.format(name))

# .tag 打标签
schedule.every().day.do(greet, 'Andrea').tag('daily-tasks', 'friend')
schedule.every().hour.do(greet, 'John').tag('hourly-tasks', 'friend')
schedule.every().hour.do(greet, 'Monica').tag('hourly-tasks', 'customer')
schedule.every().day.do(greet, 'Derek').tag('daily-tasks', 'guest')

# get_jobs(标签):可以获取所有该标签的任务
friends = schedule.get_jobs('friend')

# 取消所有 daily-tasks 标签的任务
schedule.clear('daily-tasks')

设定作业截止时间

如果你需要让某个作业到某个时间截止,你可以通过这个方法:

import schedule
from datetime import datetime, timedelta, time

def job():
    print('Boo')

# 每个小时运行作业,18:30后停止
schedule.every(1).hours.until("18:30").do(job)

# 每个小时运行作业,2030-01-01 18:33 today
schedule.every(1).hours.until("2030-01-01 18:33").do(job)

# 每个小时运行作业,8个小时后停止
schedule.every(1).hours.until(timedelta(hours=8)).do(job)

# 每个小时运行作业,11:32:42后停止
schedule.every(1).hours.until(time(11, 33, 42)).do(job)

# 每个小时运行作业,2020-5-17 11:36:20后停止
schedule.every(1).hours.until(datetime(2020, 5, 17, 11, 36, 20)).do(job)

截止日期之后,该作业将无法运行。

立即运行所有作业,而不管其安排如何

如果某个机制触发了,你需要立即运行所有作业,可以调用 schedule.run_all() :

import schedule

def job_1():
    print('Foo')

def job_2():
    print('Bar')

schedule.every().monday.at("12:40").do(job_1)
schedule.every().tuesday.at("16:40").do(job_2)

schedule.run_all()

# 立即运行所有作业,每次作业间隔10秒
schedule.run_all(delay_seconds=10)

3.高级使用

装饰器安排作业

如果你觉得设定作业这种形式太啰嗦了,也可以使用装饰器模式:

from schedule import every, repeat, run_pending
import time

# 此装饰器效果等同于 schedule.every(10).minutes.do(job)
@repeat(every(10).minutes)
def job():
    print("I am a scheduled job")

while True:
    run_pending()
    time.sleep(1)

并行执行

默认情况下,Schedule 按顺序执行所有作业。其背后的原因是,很难找到让每个人都高兴的并行执行模型。

不过你可以通过多线程的形式来运行每个作业以解决此限制:

import threading
import time
import schedule

def job1():
    print("I'm running on thread %s" % threading.current_thread())
def job2():
    print("I'm running on thread %s" % threading.current_thread())
def job3():
    print("I'm running on thread %s" % threading.current_thread())

def run_threaded(job_func):
    job_thread = threading.Thread(target=job_func)
    job_thread.start()

schedule.every(10).seconds.do(run_threaded, job1)
schedule.every(10).seconds.do(run_threaded, job2)
schedule.every(10).seconds.do(run_threaded, job3)

while True:
    schedule.run_pending()
    time.sleep(1)

日志记录

Schedule 模块同时也支持 logging 日志记录,这么使用:

import schedule
import logging

logging.basicConfig()
schedule_logger = logging.getLogger('schedule')
# 日志级别为DEBUG
schedule_logger.setLevel(level=logging.DEBUG)

def job():
    print("Hello, Logs")

schedule.every().second.do(job)

schedule.run_all()

schedule.clear()

效果如下:

DEBUG:schedule:Running *all* 1 jobs with 0s delay in between
DEBUG:schedule:Running job Job(interval=1, unit=seconds, do=job, args=(), kwargs={})
Hello, Logs
DEBUG:schedule:Deleting *all* jobs

异常处理

Schedule 不会自动捕捉异常,它遇到异常会直接抛出,这会导致一个严重的问题:后续所有的作业都会被中断执行,因此我们需要捕捉到这些异常。

你可以手动捕捉,但是某些你预料不到的情况需要程序进行自动捕获,加一个装饰器就能做到了:

import functools

def catch_exceptions(cancel_on_failure=False):
    def catch_exceptions_decorator(job_func):
        @functools.wraps(job_func)
        def wrapper(*args, **kwargs):
            try:
                return job_func(*args, **kwargs)
            except:
                import traceback
                print(traceback.format_exc())
                if cancel_on_failure:
                    return schedule.CancelJob
        return wrapper
    return catch_exceptions_decorator

@catch_exceptions(cancel_on_failure=True)
def bad_task():
    return 1 / 0

schedule.every(5).minutes.do(bad_task)

这样,bad_task 在执行时遇到的任何错误,都会被 catch_exceptions 捕获,这点在保证调度任务正常运转的时候非常关键。

到此这篇关于Python周期任务神器之Schedule模块使用详解的文章就介绍到这了,更多相关Python Schedule模块内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python的schedule定时任务模块二次封装方法

    通过定时来执行任务,我们日常工作生活中会经常用到.python有schedule这个库,简单好用,比如,可以每秒,每分,每小时,每天,每天的某个时间点,间隔天数的某个时间点定时执行,另外自己又写了一个可以自定义时间点来定时执行任务,代码如下. import schedule import time class Timing(): #按秒循环定时执行任务 def doEverySecond(self,seconds,job_func): try: schedule.every(seconds).s

  • 简单的Python调度器Schedule详解

    最近在做项目的时候经常会用到定时任务,由于我的项目是使用Java来开发,用的是SpringBoot框架,因此要实现这个定时任务其实并不难. 后来我在想如果我要在Python中实现,我要怎么做呢? 一开始我首先想到的是Timer Timer 这个是一个扩展自threading模块来实现的定时任务.它其实是一个线程. # 首先定义一个需要定时执行的方法 >>> def hello(): print("hello!") # 导入threading,并创建Timer,设置1秒

  • Python3.6 Schedule模块定时任务(实例讲解)

    一,编程环境 PyCharm2016,Anaconda3 Python3.6 需要安装schedule模块,该模块网址:https://pypi.python.org/pypi/schedule 打开Anaconda Prompt,输入:conda install schedule 提示:Package Not Found Error 于是,使用 pip 安装.由于Anaconda3 中已经自带了pip,如下图: 于是 cmd 命令行切换到 scripts 目录,执行 pip.exe insta

  • Python任务调度模块APScheduler使用

    APScheduler是一个Python定时任务框架,使用起来十分方便.提供了基于日期.固定时间间隔以及crontab类型的任务,并且可以持久化任务.并以daemon方式运行应用. 在APScheduler中有四个组件: 触发器(trigger)包含调度逻辑,每一个作业有它自己的触发器,用于决定接下来哪一个作业会运行.除了他们自己初始配置意外,触发器完全是无状态的.简单说就是应该说明一个任务应该在什么时候执行. 作业存储(job store)存储被调度的作业,默认的作业存储是简单地把作业保存在内

  • Python周期任务神器之Schedule模块使用详解

    目录 1.准备 2.基本使用 参数传递 获取目前所有的作业 取消所有作业 标签功能 设定作业截止时间 立即运行所有作业,而不管其安排如何 3.高级使用 装饰器安排作业 并行执行 日志记录 异常处理 如果你想在Linux服务器上周期性地执行某个 Python 脚本,最出名的选择应该是 Crontab 脚本,但是 Crontab 具有以下缺点: 1.不方便执行秒级的任务. 2.当需要执行的定时任务有上百个的时候,Crontab的管理就会特别不方便 另外一个选择是 Celery,但是 Celery 的

  • Python图像处理库PIL的ImageGrab模块介绍详解

    ImageGrab模块用于将当前屏幕的内容或者剪贴板上的内容拷贝到PIL图像内存. 当前版本只支持windows系统. 一.ImageGrab模块的函数 1.  Grab 定义:ImageGrab.grab()⇒ image ImageGrab.grab(bbox) ⇒ image 含义:(New in 1.1.3)抓取当前屏幕的快照,返回一个模式为"RGB"的图像.参数边界框用于限制只拷贝当前屏幕的一部分区域. 例子: >>> from PIL importImag

  • Python图像处理库PIL的ImageDraw模块介绍详解

    ImageDraw模块提供了图像对象的简单2D绘制.用户可以使用这个模块创建新的图像,注释或润饰已存在图像,为web应用实时产生各种图形. PIL中一个更高级绘图库见The aggdraw Module 一.ImageDraw模块的概念 1.  Coordinates 绘图接口使用和PIL一样的坐标系统,即(0,0)为左上角. 2.  Colours 为了指定颜色,用户可以使用数字或者元组,对应用户使用函数Image.new或者Image.putpixel.对于模式为"1","

  • Python标准库之Math,Random模块使用详解

    目录 数学模块 ceil -- 上取整 floor -- 下取整 四舍五入 pow -- 幂运算 sqrt -- 开平方运算 fabs -- 绝对值 modf -- 拆分整数小数 copysign -- 正负拷贝 fsum -- 序列和 pi -- 圆周率常数 factorial -- 因数 随机模块 random -- 获取 0~~1 之间的小数 randrange -- 获取指定范围内的整数 randint -- 获取指定范围整数 uniform -- 获取指定范围内随机小数(左闭右开) c

  • python爬虫学习笔记之Beautifulsoup模块用法详解

    本文实例讲述了python爬虫学习笔记之Beautifulsoup模块用法.分享给大家供大家参考,具体如下: 相关内容: 什么是beautifulsoup bs4的使用 导入模块 选择使用解析器 使用标签名查找 使用find\find_all查找 使用select查找 首发时间:2018-03-02 00:10 什么是beautifulsoup: 是一个可以从HTML或XML文件中提取数据的Python库.它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式.(官方) beautif

  • Python企业编码生成系统之主程序模块设计详解

    本文实例讲述了Python企业编码生成系统之主程序模块.分享给大家供大家参考,具体如下: 一 点睛 主程序模块包括三部分: 1 主程序初始化 2 主程序界面 3 主程序逻辑 下面分别介绍 二 主程序初始化 # 以下5个为内部模块 import os import qrcode import random import time import tkinter # 导入tkinter from pystrich.ean13 import EAN13Encoder # 条形码模块 import tki

  • IDEA POJO开发神器之Groovy的使用详解

    暂时只对 MySQL进行了测试 项目使用 Lombok MyBatis-Plus 一:使用步骤首先在项目右侧找到 DataBase 如图 没有请参考 idea中database不显示问题 2.点开之后进行数据库连接(注意没有驱动的请下载相关数据库驱动)具体步骤如图 点开 + 号 选择Date Source 找到相应的数据库 这里我使用的是 mysql 如果没有 Dirver 请下载 idea 会在窗口左下角给提示(这里具体在什么位置我也记不清楚)输入相关连接信息 过程中出现任何问题,请在留言区留

  • python logging日志模块的详解

    python logging日志模块的详解 日志级别 日志一共分成5个等级,从低到高分别是:DEBUG INFO WARNING ERROR CRITICAL. DEBUG:详细的信息,通常只出现在诊断问题上 INFO:确认一切按预期运行 WARNING:一个迹象表明,一些意想不到的事情发生了,或表明一些问题在不久的将来(例如.磁盘空间低").这个软件还能按预期工作. ERROR:更严重的问题,软件没能执行一些功能 CRITICAL:一个严重的错误,这表明程序本身可能无法继续运行 这5个等级,也

  • 对Python信号处理模块signal详解

    Python中对信号处理的模块主要是使用signal模块,但signal主要是针对Unix系统,所以在Windows平台上Python不能很好的发挥信号处理的功能. 要查看Python中的信号量,可以使用dir(signal)来查看. signal.signal() 在signal模块中,主要是使用signal.signal()函数来预设信号处理函数 singnal.signal(signalnum, handler) 其中第一个参数是信号量,第二个参数信号处理函数. 下面看个简单的例子,其中

  • Python安装依赖(包)模块方法详解

    Python模块,简单说就是一个.py文件,其中可以包含我们需要的任意Python代码.迄今为止,我们所编写的所有程序都包含在单独的.py文件中,因此,它们既是程序,同时也是模块.关键的区别在于,程序的设计目标是运行,而模块的设计目标是由其他程序导入并使用. 不是所有程序都有相关联的.py文件-比如说,sys模块就内置于Python中,还有些模块是使用其他语言(最常见的是C语言)实现的.不过,Python的大多数库文件都是使用Python实现的,因此,比如说,我们使用了语句import coll

随机推荐