pandas groupby分组对象的组内排序解决方案

问题:

根据数据某列进行分组,选择其中另一列大小top-K的的所在行数据

解析:

求解思路很清晰,即先用groupby对数据进行分组,然后再根据分组后的某一列进行排序,选择排序结果后的top-K结果

案例:

取一下dataframe中B列各对象中C值最高所在的行

df = pd.DataFrame({"A": [2, 3, 5, 4], "B": ['a', 'b', 'b', 'a'], "C": [200801, 200902, 200704, 201003]})

Groupby的基本功能介绍

groupby以后返回DataFrameGroupBy对象,实际上还没有进行任何计算,只是一个暂时存储的容器,

[In]df.groupby('B')
[Out]<pandas.core.groupby.DataFrameGroupBy object at 0x11800f588>

对groupby结果进行简单的列选取返回的也是DataFrameGroupBy/SeriesGroupBy对象,无法可视化

[In]df.groupby('B')['A']   # 返回SeriesGroupBy对象
[Out]<pandas.core.groupby.SeriesGroupBy object at 0x117f6b630>

[In]df.groupby('B')['A','C']   # 返回DataFrameGroupBy对象
[Out]<pandas.core.groupby.DataFrameGroupBy object at 0x117fb84e0>

需要对DataFrameGroupBy进行计数、统计、agg聚合计算、apply映射计算和transform等操作,才能生成可视化的数据(下文仅以count和size函数为例展示,不涉及其它的操作)

[In] df.groupby('B', as_index=False)['A'].count()  # 组内数据统计
[Out] B A
 0 a 2
 1 b 2

[In] df.groupby('B')['A'].size().reset_index(name='Size') # 组内数据统计,size和count的一个显著区别在于count不考虑Nan,size考虑Nan
[Out] B Size
 0  a 2
 1  b 2

解决方案一:

对DataFrameGroupBy对象,用apply函数进行某列的sort_values排序,再选出其中的最大值所在行

# 返回值是一个带有multiindex的dataframe数据,其中level=0为groupby的by列,而level=1为原index
[In] df.groupby('B').apply(lambda x: x.sort_values('C', ascending=False))
[Out] A B C
B
a 3 4 a 201003
 0 2 a 200801
b 1 3 b 200902
 2 5 b 200704

# 通过设置group_keys参数对multiindex进行优化
[In] df.groupby('B', group_keys=False).apply(lambda x: x.sort_values('C', ascending=False))
[Out] A B  C
 3 4 a 201003
 0 2 a 200801
 1 3 b 200902
 2 5 b 200704

# 再次groupby,并调用内置的first()方法,取最大值
[In] df.groupby('B', group_keys=False).apply(lambda x: x.sort_values('C', ascending=False)).groupby('B').first().reset_index()
[Out]  B A  C
 0 a 4 201003
 1 b 3 200902

解决方案二:

先对B进行整体的sort_values,在groupy取值

[In] df.sort_values('C', ascending=False).groupby('B').first().reset_index()
[Out]  B A  C
 0 a 4 201003
 1 b 3 200902

问题拓展:

以上仅解决了Top-1的问题,如果是Top-k呢?

答案:将first()函数变为head()函数

[In] df.sort_values('C', ascending=False).groupby('B').head(2)
[Out] A B C
 3 4 a 201003
 1 3 b 200902
 0 2 a 200801
 2 5 b 200704

总结:

1、方案二,即先排序再groupby取值更方便

2、pandas中API众多,在实际使用时要捋清各步骤返回值的类型以方便记忆和联想

补充:pandas分组groupby、agg,排序sort,连接concat、join

连接concat和join

横向连接

pd.concat([df6,df7],axis=1)
df6.join(df7)

# df6的表格在前面,如需df7的表格在前需要交换位置

注意点:

1、concat这个方法,既可以实现横向连接,也可以实现纵向连接,通过设置axis的值来控制,axis=1表示的是横向连接,如果多个连接的对象,放在列表中

2、join也可以实现

纵向连接

pd.concat([df8,df9],ignore_index=True)

注意点:

1、进行纵向合并的数据,需要用[]集合起来

2、ignore_index忽略原有的行索引,重新排列

3、drop_duplicates()删除重复数据

排序

#按照成绩排序
df10.sort_values('score')
#默认升序,从小到大

df10.sort_values(['score','group'],ascending=False,na_position='first')
#sort各个属性
参数 描述
by 字符串或者列表,如果是单个排序字段,使用的是字符串,如果指定多个,需要使用列表
ascending True的时候,是按照升序,默认是升序
na_position 表示的是空值的位置,'last'是默认的,'first'开始位置

分组

### groupby
df11.groupby('class')
df11.groupby(['class','grade'])

for cls,data in df11.groupby(['class','grade']):
print(cls)
print(data)

注意点:

1、groupby 如果指定的是一个列,如果是多个列[]

2、groupby返回的是一个对象,所以不能直接访问,可以使用for

筛选出分组之后的列

如果筛选出一列数据[[列名]],返回的是dataframe对象

如果筛选出多个列数据,直接使用[]和[[]]均可

总结[[列1,列2,。。。。]]

聚合函数 agg配合使用

dff.groupby('class')[['math']].agg(['mean','max','min','median','std'])
函数 描述
mean 均值
max 最大值
min 最小值
median 中位数
std 标准差
count 计数
skew 偏度
quantile 指定分位数

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • pandas之分组groupby()的使用整理与总结

    前言 在使用pandas的时候,有些场景需要对数据内部进行分组处理,如一组全校学生成绩的数据,我们想通过班级进行分组,或者再对班级分组后的性别进行分组来进行分析,这时通过pandas下的groupby()函数就可以解决.在使用pandas进行数据分析时,groupby()函数将会是一个数据分析辅助的利器. groupby的作用可以参考 超好用的 pandas 之 groupby 中作者的插图进行直观的理解: 准备 读入的数据是一段学生信息的数据,下面将以这个数据为例进行整理grouby()函数的

  • pandas数据分组groupby()和统计函数agg()的使用

    数据分组 使用 groupby() 方法进行分组 group.size()查看分组后每组的数量 group.groups 查看分组情况 group.get_group('名字') 根据分组后的名字选择分组数据 准备数据 # 一个Series其实就是一条数据,Series方法的第一个参数是data,第二个参数是index(索引),如果没有传值会使用默认值(0-N) # index参数是我们自定义的索引值,注意:参数值的个数一定要相同. # 在创建Series时数据并不一定要是列表,也可以将一个字典

  • Pandas之groupby( )用法笔记小结

    groupby官方解释 DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs) Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of

  • pandas获取groupby分组里最大值所在的行方法

    pandas获取groupby分组里最大值所在的行方法 如下面这个DataFrame,按照Mt分组,取出Count最大的那行 import pandas as pd df = pd.DataFrame({'Sp':['a','b','c','d','e','f'], 'Mt':['s1', 's1', 's2','s2','s2','s3'], 'Value':[1,2,3,4,5,6], 'Count':[3,2,5,10,10,6]}) df Count Mt Sp Value 0 3 s1

  • 利用Pandas和Numpy按时间戳将数据以Groupby方式分组

    首先说一下需求,我需要将数据以分钟为单位进行分组,然后每一分钟内的数据作为一行输出,因为不同时间的数据量不一样,所以所有数据按照最长的那组数据为准,不足的数据以各自的最后一个数据进行补足. 之后要介绍一下我的数据源,之前没用的数据列已经去除,我只留下要用到的数据data列和时间戳time列,时间戳是以秒计的,可以看到一共是407454行. data time 0 6522.50 1.530668e+09 1 6522.66 1.530668e+09 2 6523.79 1.530668e+09

  • Pandas GroupBy对象 索引与迭代方法

    如下所示: import pandas as pd df = pd.DataFrame({'性别' : ['男', '女', '男', '女', '男', '女', '男', '男'], '成绩' : ['优秀', '优秀', '及格', '差', '及格', '及格', '优秀', '差'], '年龄' : [15,14,15,12,13,14,15,16]}) GroupBy=df.groupby("性别") GroupBy.iter() GroupBy对象是一个迭代对象,每次迭代

  • Pandas groupby apply agg 的区别 运行自定义函数说明

    agg 方法将一个函数使用在一个数列上,然后返回一个标量的值.也就是说agg每次传入的是一列数据,对其聚合后返回标量. 对一列使用三个函数: 对不同列使用不同函数 apply 是一个更一般化的方法:将一个数据分拆-应用-汇总.而apply会将当前分组后的数据一起传入,可以返回多维数据. 实例: 1.数据如下: lawsuit2[['EID','LAWAMOUNT','LAWDATE']] 2.groupby后应用apply传入函数数据如下: lawsuit2[['EID','LAWAMOUNT'

  • 浅谈pandas用groupby后对层级索引levels的处理方法

    层及索引levels,刚开始学习pandas的时候没有太多的操作关于groupby,仅仅是简单的count.sum.size等等,没有更深入的利用groupby后的数据进行处理.近来数据处理的时候有遇到这类问题花了一点时间,所以这里记录以及复习一下:(以下皆是个人实践后的理解) 我使用一个实例来讲解下面的问题:一张数据表中有三列(动物物种.物种品种.品种价格),选出每个物种从大到小品种的前两种,最后只需要品种和价格这两列. 以上这张表是我们后面需要处理的数据表 (物种 品种 价格) levels

  • pandas groupby + unstack的使用说明

    概述 groupby()可以根据DataFrame中的某一列或者多列内容进行分组聚合,当DataFrame聚合后为两列索引时,可以使用unstack()将聚合的两列中一列值调整为行索引,另一列的值调整为列索引. 代码说明 test_df = pd.DataFrame({ 'col_1':['a', 'a', 'b', 'a', 'a', 'b', 'c', 'a', 'c'], 'col_2':['d', 'd', 'd', 'e', 'f', 'e', 'd', 'f', 'f'], 'col

  • pandas groupby分组对象的组内排序解决方案

    问题: 根据数据某列进行分组,选择其中另一列大小top-K的的所在行数据 解析: 求解思路很清晰,即先用groupby对数据进行分组,然后再根据分组后的某一列进行排序,选择排序结果后的top-K结果 案例: 取一下dataframe中B列各对象中C值最高所在的行 df = pd.DataFrame({"A": [2, 3, 5, 4], "B": ['a', 'b', 'b', 'a'], "C": [200801, 200902, 200704

  • pandas groupby 分组取每组的前几行记录方法

    直接上例子. import pandas as pd df = pd.DataFrame({'class':['a','a','b','b','a','a','b','c','c'],'score':[3,5,6,7,8,9,10,11,14]}) df: class score 0 a 3 1 a 5 2 b 6 3 b 7 4 a 8 5 a 9 6 b 10 7 c 11 8 c 14 df.sort_values(['class','score'],ascending=[1,0],inp

  • pandas数据分组和聚合操作方法

    <Python for Data Analysis> GroupBy 分组运算:split-apply-combine(拆分-应用-合并) DataFrame可以在其行(axis=0)或列(axis=1)上进行分组.然后,将一个函数应用到各个分组并产生新值.最后,所有这些函数的执行结果会被合并到最终的结果对象中去. GroupBy的size方法可以返回一个含有分组大小的Series. 对分组进行迭代 for (k1,k2), group in df.groupby(['key1','key2'

  • pandas多级分组实现排序的方法

    pandas有groupby分组函数和sort_values排序函数,但是如何对dataframe分组之后排序呢? In [70]: df = pd.DataFrame(((random.randint(2012, 2016), random.choice(['tech', 'art', 'office']), '%dk-%dk'%(random.randint(2,10), random.randint(10, 20)), '') for _ in xrange(10000)), column

  • Python在groupby分组后提取指定位置记录方法

    在进行数据分析.数据建模时,我们首先要做的就是对数据进行处理,提取我们需要的信息.下面为大家介绍一些groupby的用法,以便能够更加方便地进行数据处理. 我们往往在使用groupby进行信息提取时,往往是求分组后样本的一些统计量(max.min,var等).如果现在我们希望取一下分组后样本的第二条记录,倒数第三条记录,这个该如何操作呢?我们可以通过first.last来提取分组后第一条和最后一条样本.但如果我们要取指定位置的样本,就没有现成的函数.需要我们自己去写了.下面我就为大家介绍如何实现

  • Pandas实现groupby分组统计的实践

    目录 1.创建数据和导入包 2.分组使用聚合函数做数据统计 3.遍历groupby的结果理解执行流程 4.实例分组探索天气数据 类似SQL:select city,max(temperature) from city_weather group by city; groupby:先对数据分组,然后在每个分组上应用聚合函数.转换函数 本次演示:一.分组使用聚合函数做数据统计二.遍历groupby的结果理解执行流程三.实例分组探索天气数据 1.创建数据和导入包 import pandas as pd

  • pandas组内排序,并在每个分组内按序打上序号的操作

    问题: pandas组内排序,并在每个分组内按序打上序号 描述: pandas dataframe 对dep_id组内的salary排序.希望给下面原本只有前三列的dataframe,添加上第四列. 等价于sql里的排序函数 row_number() over() 功能 假设我已经建好了仅有前三列的dataframe,数据集命名为 MyData, 解决方案如下: MyData['sort_id'] = MyData['salary'].groupby(MyData['dep_id']).rank

  • python pandas 组内排序、单组排序、标号的实例

    摘要:本文主要是讲解一下,如何进行排序.分为两种情况,不分组进行排序和组内进行排序.什么意思呢?具体来说,我举个栗子. ****注意**** 如果只是单纯想对某一列进行排序,而不进行打序号的话直接使用.sort_values就可以了.下文是关于如何把序号也打上的 ---------------------------- 我们有一个数据集如下: 我们下面想进行两种排序.先说第一种比较简单的也是很常用的,简单的对某一列进行排序然后添加一列序号. 例如,我们队comment_num这一列进行从大到小的

随机推荐