吴恩达机器学习练习:SVM支持向量机

1 Support Vector Machines

1.1 Example Dataset 1

%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
from scipy.io import loadmat
from sklearn import svm

大多数SVM的库会自动帮你添加额外的特征X₀已经θ₀,所以无需手动添加

mat = loadmat('./data/ex6data1.mat')
print(mat.keys())
# dict_keys(['__header__', '__version__', '__globals__', 'X', 'y'])
X = mat['X']
y = mat['y']
def plotData(X, y):
    plt.figure(figsize=(8,5))
    plt.scatter(X[:,0], X[:,1], c=y.flatten(), cmap='rainbow')
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.legend()
plotData(X, y)

def plotBoundary(clf, X):
    '''plot decision bondary'''
    x_min, x_max = X[:,0].min()*1.2, X[:,0].max()*1.1
    y_min, y_max = X[:,1].min()*1.1,X[:,1].max()*1.1
    xx, yy = np.meshgrid(np.linspace(x_min, x_max, 500),
                         np.linspace(y_min, y_max, 500))
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    plt.contour(xx, yy, Z)
models = [svm.SVC(C, kernel='linear') for C in [1, 100]]
clfs = [model.fit(X, y.ravel()) for model in models]
title = ['SVM Decision Boundary with C = {} (Example Dataset 1'.format(C) for C in [1, 100]]
for model,title in zip(clfs,title):
    plt.figure(figsize=(8,5))
    plotData(X, y)
    plotBoundary(model, X)
    plt.title(title)

可以从上图看到,当C比较小时模型对误分类的惩罚增大,比较严格,误分类少,间隔比较狭窄。

当C比较大时模型对误分类的惩罚增大,比较宽松,允许一定的误分类存在,间隔较大。

1.2 SVM with Gaussian Kernels

这部分,使用SVM做非线性分类。我们将使用高斯核函数。

为了用SVM找出一个非线性的决策边界,我们首先要实现高斯核函数。我可以把高斯核函数想象成一个相似度函数,用来测量一对样本的距离,(x ⁽ ʲ ⁾,y ⁽ ⁱ ⁾)

这里我们用sklearn自带的svm中的核函数即可。

1.2.1 Gaussian Kernel

def gaussKernel(x1, x2, sigma):
    return np.exp(- ((x1 - x2) ** 2).sum() / (2 * sigma ** 2))
gaussKernel(np.array([1, 2, 1]),np.array([0, 4, -1]), 2.)  # 0.32465246735834974

1.2.2 Example Dataset 2

mat = loadmat('./data/ex6data2.mat')
X2 = mat['X']
y2 = mat['y']
plotData(X2, y2)

sigma = 0.1
gamma = np.power(sigma,-2.)/2
clf = svm.SVC(C=1, kernel='rbf', gamma=gamma)
modle = clf.fit(X2, y2.flatten())
plotData(X2, y2)
plotBoundary(modle, X2)

1.2.3 Example Dataset 3

mat3 = loadmat('data/ex6data3.mat')
X3, y3 = mat3['X'], mat3['y']
Xval, yval = mat3['Xval'], mat3['yval']
plotData(X3, y3)

Cvalues = (0.01, 0.03, 0.1, 0.3, 1., 3., 10., 30.)
sigmavalues = Cvalues
best_pair, best_score = (0, 0), 0
for C in Cvalues:
    for sigma in sigmavalues:
        gamma = np.power(sigma,-2.)/2
        model = svm.SVC(C=C,kernel='rbf',gamma=gamma)
        model.fit(X3, y3.flatten())
        this_score = model.score(Xval, yval)
        if this_score > best_score:
            best_score = this_score
            best_pair = (C, sigma)
print('best_pair={}, best_score={}'.format(best_pair, best_score))
# best_pair=(1.0, 0.1), best_score=0.965
model = svm.SVC(C=1., kernel='rbf', gamma = np.power(.1, -2.)/2)
model.fit(X3, y3.flatten())
plotData(X3, y3)
plotBoundary(model, X3)

# 这我的一个练习画图的,和作业无关,给个画图的参考。
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
# we create 40 separable points
np.random.seed(0)
X = np.array([[3,3],[4,3],[1,1]])
Y = np.array([1,1,-1])
# fit the model
clf = svm.SVC(kernel='linear')
clf.fit(X, Y)
# get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - (clf.intercept_[0]) / w[1]
# plot the parallels to the separating hyperplane that pass through the
# support vectors
b = clf.support_vectors_[0]
yy_down = a * xx + (b[1] - a * b[0])
b = clf.support_vectors_[-1]
yy_up = a * xx + (b[1] - a * b[0])
# plot the line, the points, and the nearest vectors to the plane
plt.figure(figsize=(8,5))
plt.plot(xx, yy, 'k-')
plt.plot(xx, yy_down, 'k--')
plt.plot(xx, yy_up, 'k--')
# 圈出支持向量
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
            s=150, facecolors='none', edgecolors='k', linewidths=1.5)
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.rainbow)
plt.axis('tight')
plt.show()
print(clf.decision_function(X))

[ 1. 1.5 -1. ]

2 Spam Classification

2.1 Preprocessing Emails

这部分用SVM建立一个垃圾邮件分类器。你需要将每个email变成一个n维的特征向量,这个分类器将判断给定一个邮件x是垃圾邮件(y=1)或不是垃圾邮件(y=0)。

take a look at examples from the dataset

with open('data/emailSample1.txt', 'r') as f:
    email = f.read()
    print(email)
> Anyone knows how much it costs to host a web portal ?
>
Well, it depends on how many visitors you're expecting.
This can be anywhere from less than 10 bucks a month to a couple of $100.
You should checkout http://www.rackspace.com/ or perhaps Amazon EC2
if youre running something big..
To unsubscribe yourself from this mailing list, send an email to:
groupname-unsubscribe@egroups.com

可以看到,邮件内容包含 a URL, an email address(at the end), numbers, and dollar amounts. 很多邮件都会包含这些元素,但是每封邮件的具体内容可能会不一样。因此,处理邮件经常采用的方法是标准化这些数据,把所有URL当作一样,所有数字看作一样。

例如,我们用唯一的一个字符串‘httpaddr'来替换所有的URL,来表示邮件包含URL,而不要求具体的URL内容。这通常会提高垃圾邮件分类器的性能,因为垃圾邮件发送者通常会随机化URL,因此在新的垃圾邮件中再次看到任何特定URL的几率非常小。

我们可以做如下处理:

  1. Lower-casing: 把整封邮件转化为小写。
  2. Stripping HTML: 移除所有HTML标签,只保留内容。
  3. Normalizing URLs: 将所有的URL替换为字符串 “httpaddr”.
  4. Normalizing Email Addresses: 所有的地址替换为 “emailaddr”
  5. Normalizing Dollars: 所有dollar符号($)替换为“dollar”.
  6. Normalizing Numbers: 所有数字替换为“number”
  7. Word Stemming(词干提取): 将所有单词还原为词源。例如,“discount”, “discounts”, “discounted” and “discounting”都替换为“discount”。
  8. Removal of non-words: 移除所有非文字类型,所有的空格(tabs, newlines, spaces)调整为一个空格.
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import loadmat
from sklearn import svm
import re #regular expression for e-mail processing
# 这是一个可用的英文分词算法(Porter stemmer)
from stemming.porter2 import stem
# 这个英文算法似乎更符合作业里面所用的代码,与上面效果差不多
import nltk, nltk.stem.porter
def processEmail(email):
    """做除了Word Stemming和Removal of non-words的所有处理"""
    email = email.lower()
    email = re.sub('<[^<>]>', ' ', email)  # 匹配<开头,然后所有不是< ,> 的内容,知道>结尾,相当于匹配<...>
    email = re.sub('(http|https)://[^\s]*', 'httpaddr', email )  # 匹配//后面不是空白字符的内容,遇到空白字符则停止
    email = re.sub('[^\s]+@[^\s]+', 'emailaddr', email)
    email = re.sub('[\$]+', 'dollar', email)
    email = re.sub('[\d]+', 'number', email)
    return email

接下来就是提取词干,以及去除非字符内容。

def email2TokenList(email):
    """预处理数据,返回一个干净的单词列表"""
    # I'll use the NLTK stemmer because it more accurately duplicates the
    # performance of the OCTAVE implementation in the assignment
    stemmer = nltk.stem.porter.PorterStemmer()
    email = preProcess(email)
    # 将邮件分割为单个单词,re.split() 可以设置多种分隔符
    tokens = re.split('[ \@\$\/\#\.\-\:\&\*\+\=\[\]\?\!\(\)\{\}\,\'\"\>\_\<\;\%]', email)
    # 遍历每个分割出来的内容
    tokenlist = []
    for token in tokens:
        # 删除任何非字母数字的字符
        token = re.sub('[^a-zA-Z0-9]', '', token);
        # Use the Porter stemmer to 提取词根
        stemmed = stemmer.stem(token)
        # 去除空字符串‘',里面不含任何字符
        if not len(token): continue
        tokenlist.append(stemmed)
    return tokenlist  

2.1.1 Vocabulary List(词汇表)

在对邮件进行预处理之后,我们有一个处理后的单词列表。下一步是选择我们想在分类器中使用哪些词,我们需要去除哪些词。

我们有一个词汇表vocab.txt,里面存储了在实际中经常使用的单词,共1899个。

我们要算出处理后的email中含有多少vocab.txt中的单词,并返回在vocab.txt中的index,这就我们想要的训练单词的索引。

def email2VocabIndices(email, vocab):
    """提取存在单词的索引"""
    token = email2TokenList(email)
    index = [i for i in range(len(vocab)) if vocab[i] in token ]
    return index

2.2 Extracting Features from Emails

def email2FeatureVector(email):
    """
    将email转化为词向量,n是vocab的长度。存在单词的相应位置的值置为1,其余为0
    """
    df = pd.read_table('data/vocab.txt',names=['words'])
    vocab = df.as_matrix()  # return array
    vector = np.zeros(len(vocab))  # init vector
    vocab_indices = email2VocabIndices(email, vocab)  # 返回含有单词的索引
    # 将有单词的索引置为1
    for i in vocab_indices:
        vector[i] = 1
    return vector
vector = email2FeatureVector(email)
print('length of vector = {}\nnum of non-zero = {}'.format(len(vector), int(vector.sum())))
length of vector = 1899
num of non-zero = 45

2.3 Training SVM for Spam Classification

读取已经训提取好的特征向量以及相应的标签。分训练集和测试集。

# Training set
mat1 = loadmat('data/spamTrain.mat')
X, y = mat1['X'], mat1['y']
# Test set
mat2 = scipy.io.loadmat('data/spamTest.mat')
Xtest, ytest = mat2['Xtest'], mat2['ytest']
clf = svm.SVC(C=0.1, kernel='linear')
clf.fit(X, y)

2.4 Top Predictors for Spam

predTrain = clf.score(X, y)
predTest = clf.score(Xtest, ytest)
predTrain, predTest
(0.99825, 0.989)

到此这篇关于机器学习SVM支持向量机的练习文章就介绍到这了,更多相关机器学习内容请搜索我们以前的文章或继续浏览下面的相关文章,希望大家以后多多支持我们!

(0)

相关推荐

  • AI:如何训练机器学习的模型

    1.Training: 如何训练模型 一句话理解机器学习一般训练过程 :通过有标签样本来调整(学习)并确定所有权重Weights和偏差Bias的理想值. 训练的目标:最小化损失函数 (损失函数下面马上会介绍) 机器学习算法在训练过程中,做的就是:检查多个样本并尝试找出可最大限度地减少损失的模型:目标就是将损失(Loss)最小化 上图就是一般模型训练的一般过程(试错过程),其中 模型: 将一个或多个特征作为输入,然后返回一个预测 (y') 作为输出.为了进行简化,不妨考虑一种采用一个特征并返回一个

  • 深度学习详解之初试机器学习

    机器学习可应用在各个方面,本篇将在系统性进入机器学习方向前,初步认识机器学习,利用线性回归预测波士顿房价: 原理简介 利用线性回归最简单的形式预测房价,只需要把它当做是一次线性函数y=kx+b即可.我要做的就是利用已有数据,去学习得到这条直线,有了这条直线,则对于某个特征x(比如住宅平均房间数)的任意取值,都可以找到直线上对应的房价y,也就是模型的预测值. 从上面的问题看出,这应该是一个有监督学习中的回归问题,待学习的参数为实数k和实数b(因为就只有一个特征x),从样本集合sample中取出一对

  • python 机器学习的标准化、归一化、正则化、离散化和白化

    机器学习的本质是从数据集中发现数据内在的特征,而数据的内在特征往往被样本的规格.分布范围等外在特征所掩盖.数据预处理正是为了最大限度地帮助机器学习模型或算法找到数据内在特征所做的一系列操作,这些操作主要包括标准化.归一化.正则化.离散化和白化等. 1 标准化 假定样本集是二维平面上的若干个点,横坐标 x 分布于区间 [0,100] 内,纵坐标 y 分布于区间 [0,1] 内.显然,样本集的 x 特征列和 y 特征列的动态范围相差巨大,对于机器学习模型(如k-近邻或 k-means 聚类)的影响也

  • 吴恩达机器学习练习:神经网络(反向传播)

    1 Neural Networks 神经网络 1.1 Visualizing the data 可视化数据 这部分我们随机选取100个样本并可视化.训练集共有5000个训练样本,每个样本是20*20像素的数字的灰度图像.每个像素代表一个浮点数,表示该位置的灰度强度.20×20的像素网格被展开成一个400维的向量.在我们的数据矩阵X中,每一个样本都变成了一行,这给了我们一个5000×400矩阵X,每一行都是一个手写数字图像的训练样本. import numpy as np import matpl

  • 利用机器学习预测房价

    项目介绍 背景: DC竞赛比赛项目,运用回归模型进行房价预测. 数据介绍: 数据主要包括2014年5月至2015年5月美国King County的房屋销售价格以及房屋的基本信息. 其中训练数据主要包括10000条记录,14个字段,分别代表: 销售日期(date):2014年5月到2015年5月房屋出售时的日期: 销售价格(price):房屋交易价格,单位为美元,是目标预测值: 卧室数(bedroom_num):房屋中的卧室数目: 浴室数(bathroom_num):房屋中的浴室数目: 房屋面积(

  • 吴恩达机器学习练习:SVM支持向量机

    1 Support Vector Machines 1.1 Example Dataset 1 %matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sb from scipy.io import loadmat from sklearn import svm 大多数SVM的库会自动帮你添加额外的特征X₀已经θ₀,所以无需手动添加 ma

  • Python机器学习之SVM支持向量机

    SVM支持向量机是建立于统计学习理论上的一种分类算法,适合与处理具备高维特征的数据集. SVM算法的数学原理相对比较复杂,好在由于SVM算法的研究与应用如此火爆,CSDN博客里也有大量的好文章对此进行分析,下面给出几个本人认为讲解的相当不错的: 支持向量机通俗导论(理解SVM的3层境界) JULY大牛讲的是如此详细,由浅入深层层推进,以至于关于SVM的原理,我一个字都不想写了..强烈推荐. 还有一个比较通俗的简单版本的:手把手教你实现SVM算法 SVN原理比较复杂,但是思想很简单,一句话概括,就

  • Python机器学习应用之支持向量机的分类预测篇

    目录 1.Question? 2.Answer!——SVM 3.软间隔 4.超平面 支持向量机常用于数据分类,也可以用于数据的回归预测 1.Question? 我们经常会遇到这样的问题,给你一些属于两个类别的数据(如子图1),需要一个线性分类器将这些数据分开,有很多分法(如子图2),现在有一个问题,两个分类器,哪一个更好?为了判断好坏,我们需要引入一个准则:好的分类器不仅仅能够很好的分开已有的数据集,还能对为知的数据进行两个划分,假设现在有一个属于红色数据点的新数据(如子图3中的绿三角),可以看

  • Python SVM(支持向量机)实现方法完整示例

    本文实例讲述了Python SVM(支持向量机)实现方法.分享给大家供大家参考,具体如下: 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end: 结束 op1=>operation: 读入数据 op2=>operation: 格式化数据 cond=>condition: 是否达到迭代次数 op3=>operation: 寻找超平面分割最小间隔 ccond=>cond

  • Python机器学习入门(三)数据准备

    目录 1.数据预处理 1.1调整数据尺度 1.2正态化数据 1.3标准化数据 1.4二值数据 2.数据特征选定 2.1单变量特征选定 2.2递归特征消除 2.3数据降维 2.4特征重要性 总结 特征选择时困难耗时的,也需要对需求的理解和专业知识的掌握.在机器学习的应用开发中,最基础的是特征工程. --吴恩达 1.数据预处理 数据预处理需要根据数据本身的特性进行,有缺失的要填补,有无效的要剔除,有冗余维的要删除,这些步骤都和数据本身的特性紧密相关. 1.1调整数据尺度 如果数据的各个属性按照不同的

  • Python机器学习入门(三)之Python数据准备

    目录 1.数据预处理 1.1调整数据尺度 1.2正态化数据 1.3标准化数据 1.4二值数据 2.数据特征选定 2.1单变量特征选定 2.2递归特征消除 2.3数据降维 2.4特征重要性 总结 特征选择时困难耗时的,也需要对需求的理解和专业知识的掌握.在机器学习的应用开发中,最基础的是特征工程. --吴恩达 1.数据预处理 数据预处理需要根据数据本身的特性进行,有缺失的要填补,有无效的要剔除,有冗余维的要删除,这些步骤都和数据本身的特性紧密相关. 1.1调整数据尺度 如果数据的各个属性按照不同的

  • Python机器学习logistic回归代码解析

    本文主要研究的是Python机器学习logistic回归的相关内容,同时介绍了一些机器学习中的概念,具体如下. Logistic回归的主要目的:寻找一个非线性函数sigmod最佳的拟合参数 拟合.插值和逼近是数值分析的三大工具 回归:对一直公式的位置参数进行估计 拟合:把平面上的一些系列点,用一条光滑曲线连接起来 logistic主要思想:根据现有数据对分类边界线建立回归公式.以此进行分类 sigmoid函数:在神经网络中它是所谓的激励函数.当输入大于0时,输出趋向于1,输入小于0时,输出趋向0

  • python机器学习案例教程——K最近邻算法的实现

    K最近邻属于一种分类算法,他的解释最容易,近朱者赤,近墨者黑,我们想看一个人是什么样的,看他的朋友是什么样的就可以了.当然其他还牵着到,看哪方面和朋友比较接近(对象特征),怎样才算是跟朋友亲近,一起吃饭还是一起逛街算是亲近(距离函数),根据朋友的优秀不优秀如何评判目标任务优秀不优秀(分类算法),是否不同优秀程度的朋友和不同的接近程度要考虑一下(距离权重),看几个朋友合适(k值),能否以分数的形式表示优秀度(概率分布). K最近邻概念: 它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并

  • python实现简单的单变量线性回归方法

    线性回归是机器学习中的基础算法之一,属于监督学习中的回归问题,算法的关键在于如何最小化代价函数,通常使用梯度下降或者正规方程(最小二乘法),在这里对算法原理不过多赘述,建议看吴恩达发布在斯坦福大学上的课程进行入门学习. 这里主要使用python的sklearn实现一个简单的单变量线性回归. sklearn对机器学习方法封装的十分好,基本使用fit,predict,score,来训练,预测,评价模型, 一个简单的事例如下: from pandas import DataFrame from pan

随机推荐