人脸识别具体案例(李智恩)

项目环境:python3.6

一、项目结构

二、数据集准备

数据集准备分为两步:

  1. 获取图片.
  2. 提取人脸.

1、获取图片

首先可以利用爬虫,从百度图片上批量下载图片,但注意下载数据集所用的关键词不要和之后识别任务的关键词太接近,否则若有图片重合,就会产生“识别得很准”的错觉。下面的程序为爬虫部分,在name.txt文件中写好要搜索的关键词,即可使用。

# 爬虫部分,存放到 name + ‘文件'
    #############################################################################################
    if GET_PIC == 1:
        headers = {
            'Accept-Language': 'zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2',
            'Connection': 'keep-alive',
            'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Firefox/60.0',
            'Upgrade-Insecure-Requests': '1'
        }
        A = requests.Session()
        A.headers = headers
        tm = int(input('请输入每类图片的下载数量 '))
        numPicture = tm
        line_list = []
        with open('./name.txt', encoding='utf-8') as file:
            line_list = [k.strip() for k in file.readlines()]  # 用 strip()移除末尾的空格
        for word in line_list:
            url = 'https://image.baidu.com/search/flip?tn=baiduimage&ie=utf-8&word=' + word + '&pn='
            tot = Find(url, A)
            Recommend = recommend(url)  # 记录相关推荐
            print('经过检测%s类图片共有%d张' % (word, tot))
            file = word + '文件'
            y = os.path.exists(file)
            if y == 1:
                print('该文件已存在,无需创建')
            else:
                os.mkdir(file)
            t = 0
            tmp = url
            while t < numPicture:
                try:
                    url = tmp + str(t)
                    # result = requests.get(url, timeout=10)
                    # 这里搞了下
                    result = A.get(url, timeout=10, allow_redirects=False)
                    print(url)
                except error.HTTPError as e:
                    print('网络错误,请调整网络后重试')
                    t = t + 60
                else:
                    dowmloadPicture(result.text, word)
                    t = t + 60
            numPicture = numPicture + tm
        print('当前搜索结束,开始提取人脸')
    #############################################################################################

下载图片时要注意区分,将IU的图片放在一个文件夹下,Other的放在另一文件夹下。训练集和测试集都要如此。如下图所示:

每个文件夹内都是下图形式:

在IU文件夹内图片如下所示:

对于文件夹内文件的命名,可以利用以下这段程序,按顺序重命名。

import os
raw_train_root_1 = 'E:/Table/学习数据集/find_iu/data/raw/train/IU/'
raw_train_root_2 = 'E:/Table/学习数据集/find_iu/data/raw/train/Other/'
raw_test_root_1 = 'E:/Table/学习数据集/find_iu/data/raw/test/IU/'
raw_test_root_2 = 'E:/Table/学习数据集/find_iu/data/raw/test/Other/'
raw_roots = [raw_train_root_1, raw_train_root_2, raw_test_root_1, raw_test_root_2]
for path in raw_roots:
    # 获取该目录下所有文件,存入列表中
    fileList = os.listdir(path)
    n = 0
    for i in fileList:
        # 设置旧文件名(就是路径+文件名)
        oldname = path + os.sep + fileList[n]  # os.sep添加系统分隔符
        # 设置新文件名
        newname = path + os.sep + str(n) + '.JPG'
        os.rename(oldname, newname)  # 用os模块中的rename方法对文件改名
        print(oldname, '======>', newname)
        n += 1

2.提取人脸

提取人脸,需要用到一个人脸识别库face_recognition库。face_recognition库的下载步骤参考:

https://www.jb51.net/article/209870.htm

主要有三步,可以直接在anaconda的命令行界面复制使用:

  1. pip install CMake -i https://pypi.douban.com/simple
  2. pip install dlib==19.7.0 -i https://pypi.douban.com/simple
  3. pip install face_recognition -i https://pypi.douban.com/simple

笔者已尝试,确实可用。

使用下述的函数就可以获得一张图片对应的人脸,返回值就是人脸图片。

# 找到图片中的人脸
#############################################################################################
def find_face(path):
    # Load the jpg file into a numpy array
    image = face_recognition.load_image_file(path)
    # Find all the faces in the image using the default HOG-based model.
    # This method is fairly accurate, but not as accurate as the CNN model and not GPU accelerated.
    # See also: find_faces_in_picture_cnn.py
    face_locations = face_recognition.face_locations(image) # 可以选择 model="cnn"
    if len(face_locations) == 0:
        return None
    else:
        for face_location in face_locations:
            # Print the location of each face in this image
            top, right, bottom, left = face_location
            # You can access the actual face itself like this:
            face_image = image[top:bottom, left:right]
            pil_image = Image.fromarray(face_image)
            return pil_image
#############################################################################################

对数据集进行操作之后,就可以获得处理后的人脸图片。之所以不用人物图训练,而是提取出人脸后再进行训练,是考虑到人物图像中干扰因素太多,且经过试验后发现识别的效果非常差,于是加入这个提取人脸的环节。对数据集的操作代码如下:

# 将训练集和测试集中的raw图片处理,提取出人脸图片
#############################################################################################
if __name__ == '__main__':  # 主函数入口
    raw_train_root_1 = 'E:/Table/学习数据集/find_iu/data/raw/train/IU/'
    raw_train_root_2 = 'E:/Table/学习数据集/find_iu/data/raw/train/Other/'
    raw_test_root_1 = 'E:/Table/学习数据集/find_iu/data/raw/test/IU/'
    raw_test_root_2 = 'E:/Table/学习数据集/find_iu/data/raw/test/Other/'
    raw_roots = [raw_train_root_1, raw_train_root_2, raw_test_root_1, raw_test_root_2]
    img_raw_train_1 = os.listdir(raw_train_root_1)
    img_raw_train_2 = os.listdir(raw_train_root_2)
    img_raw_test_1 = os.listdir(raw_test_root_1)
    img_raw_test_2 = os.listdir(raw_test_root_2)
    img_raws = [img_raw_train_1, img_raw_train_2, img_raw_test_1, img_raw_test_2]
    new_path_train_1 = 'E:/Table/学习数据集/find_iu/data/processed/train/IU/'
    new_path_train_2 = 'E:/Table/学习数据集/find_iu/data/processed/train/Other/'
    new_path_test_1 = 'E:/Table/学习数据集/find_iu/data/processed/test/IU/'
    new_path_test_2 = 'E:/Table/学习数据集/find_iu/data/processed/test/Other/'
    new_paths = [new_path_train_1, new_path_train_2, new_path_test_1, new_path_test_2]
    for raw_root, img_raw, new_path in zip(raw_roots, img_raws, new_paths):
        n = 0
        for i in range(len(img_raw)):
            try:
                img = Image.open(raw_root + img_raw[i])
            except:
                print('a file error, continue')
                continue
            else:
                img_train = find_face(raw_root + img_raw[i])
                if img_train == None:
                    continue
                else:
                    # img_train.save(new_path + '%d.JPG'%n)
                    # print(raw_root + img_raw[i])
                    n += 1
        print('在%d张图片中,共找到%d张脸' % (len(img_raw), n))
#############################################################################################

处理前的图片数据均存放在raw文件夹中,处理后的存放在processed文件夹中,如下图:

两个文件夹的内部结构完全一样:

三、网络模型

1、图像处理

将图片裁剪为112×92大小,使用RGB图像,(这里试过用灰度图像,但好像效果不会更好,就放弃了),在对图片进行归一化处理。

data_transform = transforms.Compose([
        # transforms.Grayscale(num_output_channels=1),  # 彩色图像转灰度图像num_output_channels默认1
        transforms.Resize(112),
        transforms.CenterCrop((112, 92)),  # 中心裁剪为112*92
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
        # transforms.Normalize(mean=0.5, std=0.5)
    ])

使用孪生神经网络(Siamese Network)

class SiameNetwork(nn.Module):
    def __init__(self):
        super(SiameNetwork, self).__init__()
        # input: h=112, w=92
        self.conv1 = torch.nn.Sequential(
            torch.nn.Conv2d(in_channels=3,  # 输入单通道
                            out_channels=16,  # 16个3*3卷积核
                            kernel_size=3,  # 卷积核尺寸
                            stride=2,  # 卷积核滑动步长, 1的话图片大小不变,2的话会大小会变为(h/2)*(w/2)
                            padding=1),  # 边缘填充大小,如果要保持原大小,kernel_size//2
            torch.nn.BatchNorm2d(16),  # 标准化,前面卷积后有16个图层
            torch.nn.ReLU()  # 激活函数
        )  # output: h=56, w=46
        self.conv2 = torch.nn.Sequential(
            torch.nn.Conv2d(16, 32, 3, 2, 1),
            torch.nn.BatchNorm2d(32),
            torch.nn.ReLU()
        )  # output: h=28, w=23
        self.conv3 = torch.nn.Sequential(
            torch.nn.Conv2d(32, 64, 3, 2, 1),
            torch.nn.BatchNorm2d(64),
            torch.nn.ReLU()
        )  # output: h=14, w=12
        self.conv4 = torch.nn.Sequential(
            torch.nn.Conv2d(64, 64, 2, 2, 0),
            torch.nn.BatchNorm2d(64),
            torch.nn.ReLU()
        )  # output: h=7, w=6
        self.mlp1 = torch.nn.Linear(7 * 6 * 64, 100)  # 需要计算conv4的输出尺寸,每次卷积的输出尺寸(size - kernal + 2*padding)/stride + 1
        self.mlp2 = torch.nn.Linear(100, 10)
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.mlp1(x.view(x.size(0), -1))  # view展平
        x = self.mlp2(x)
        return x

四、具体代码

1.get_face.py

from PIL import Image
import face_recognition
import os
# 找到图片中的人脸
#############################################################################################
def find_face(path):
    # Load the jpg file into a numpy array
    image = face_recognition.load_image_file(path)
    # Find all the faces in the image using the default HOG-based model.
    # This method is fairly accurate, but not as accurate as the CNN model and not GPU accelerated.
    # See also: find_faces_in_picture_cnn.py
    face_locations = face_recognition.face_locations(image) # 可以选择 model="cnn"
    if len(face_locations) == 0:
        return None
    else:
        for face_location in face_locations:
            # Print the location of each face in this image
            top, right, bottom, left = face_location
            # You can access the actual face itself like this:
            face_image = image[top:bottom, left:right]
            pil_image = Image.fromarray(face_image)
            return pil_image
#############################################################################################
# 将训练集和测试集中的raw图片处理,提取出人脸图片
#############################################################################################
if __name__ == '__main__':  # 主函数入口
    raw_train_root_1 = 'E:/Table/学习数据集/find_iu/data/raw/train/IU/'
    raw_train_root_2 = 'E:/Table/学习数据集/find_iu/data/raw/train/Other/'
    raw_test_root_1 = 'E:/Table/学习数据集/find_iu/data/raw/test/IU/'
    raw_test_root_2 = 'E:/Table/学习数据集/find_iu/data/raw/test/Other/'
    raw_roots = [raw_train_root_1, raw_train_root_2, raw_test_root_1, raw_test_root_2]
    img_raw_train_1 = os.listdir(raw_train_root_1)
    img_raw_train_2 = os.listdir(raw_train_root_2)
    img_raw_test_1 = os.listdir(raw_test_root_1)
    img_raw_test_2 = os.listdir(raw_test_root_2)
    img_raws = [img_raw_train_1, img_raw_train_2, img_raw_test_1, img_raw_test_2]
    new_path_train_1 = 'E:/Table/学习数据集/find_iu/data/processed/train/IU/'
    new_path_train_2 = 'E:/Table/学习数据集/find_iu/data/processed/train/Other/'
    new_path_test_1 = 'E:/Table/学习数据集/find_iu/data/processed/test/IU/'
    new_path_test_2 = 'E:/Table/学习数据集/find_iu/data/processed/test/Other/'
    new_paths = [new_path_train_1, new_path_train_2, new_path_test_1, new_path_test_2]
    for raw_root, img_raw, new_path in zip(raw_roots, img_raws, new_paths):
        n = 0
        for i in range(len(img_raw)):
            try:
                img = Image.open(raw_root + img_raw[i])
            except:
                print('a file error, continue')
                continue
            else:
                img_train = find_face(raw_root + img_raw[i])
                if img_train == None:
                    continue
                else:
                    # img_train.save(new_path + '%d.JPG'%n)
                    # print(raw_root + img_raw[i])
                    n += 1
        print('在%d张图片中,共找到%d张脸' % (len(img_raw), n))
#############################################################################################

2.find_iu.py

import torch
import torchvision
import torch.nn as nn
from torch.autograd import Variable
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import cv2   #opencv库,用于图片可视化
import numpy as np
import os
from utils import draw_result
from network import SiameNetwork
from get_face import find_face
if __name__ == '__main__':  # 主函数入口
    # 设置参数
    #############################################################################################
    path = 'E:/Table/学习数据集/find_iu/result/'    # 存放和生成结果的路径标志
    epochs = 20       #训练周期
    BATCH_SIZE = 16    #批量样本大小
    NUM_WORKERS = 0
    #############################################################################################
    # 数据处理
    #############################################################################################
    data_transform = transforms.Compose([
        # transforms.Grayscale(num_output_channels=1),  # 彩色图像转灰度图像num_output_channels默认1
        transforms.Resize(112),
        transforms.CenterCrop((112, 92)),  # 中心裁剪为112*92
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
        # transforms.Normalize(mean=0.5, std=0.5)
    ])
    train_dataset = datasets.ImageFolder(root = r'E:/Table/学习数据集/find_iu/data/processed/train',
                                         transform = data_transform)
    test_dataset = datasets.ImageFolder(root = r'E:/Table/学习数据集/find_iu/data/processed/test',
                                         transform = data_transform)
    train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS)
    test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS)
    image, labels = next(iter(train_loader))       #数据可视化
    img = torchvision.utils.make_grid(image, nrow = 10)
    img = img.numpy().transpose(1, 2, 0)
    cv2.imshow('img', img)    #展示图像
    cv2.waitKey(0)  #按下任一按键后开始工作
    print("data ready!")
    #############################################################################################
    #配置设备、损失函数和优化器
    #############################################################################################
    device = torch.device('cuda')
    model = SiameNetwork().to(device)
    cost = torch.nn.CrossEntropyLoss()        #定义损失函数,使用交叉熵
    optimizer = torch.optim.Adam(model.parameters(), lr=0.0008, weight_decay=0.001)            #Adam优化器
    print("device ready!")
    #############################################################################################
    #训练过程,训练周期由epochs决定
    #############################################################################################
    draw_epoch = []   #记录训练阶段
    draw_loss = []    #记录训练损失,用于绘制
    draw_train_acc = []   #记录训练准确度,用于绘制
    draw_val_loss = []   #记录测试损失,用于绘制
    draw_val_acc = []  # 记录测试准确度,用于绘制
    for epoch in range(epochs):
        #训练过程
        sum_loss = 0.0
        sum_val_loss = 0.0
        train_correct = 0
        test_correct = 0
        for data in train_loader:
            inputs,labels = data
            inputs,labels = Variable(inputs).cuda(),Variable(labels).cuda()
            optimizer.zero_grad()        #将上一batch梯度清零
            outputs = model(inputs)
            loss = cost(outputs, labels)
            loss.backward()             #反向传播
            optimizer.step()
            _, id = torch.max(outputs.data, 1)
            sum_loss += loss.data
            train_correct += torch.sum(id == labels.data)
        for data in test_loader:              # 模型测试
            inputs,labels = data
            inputs,labels = Variable(inputs).cuda(),Variable(labels).cuda()
            outputs = model(inputs)
            val_loss = cost(outputs, labels)
            _,id = torch.max(outputs.data, 1)
            sum_val_loss += val_loss.data
            test_correct += torch.sum(id == labels.data)
        print('[%d,%d] train loss:%.03f      train acc:%.03f%%'
              %(epoch + 1, epochs, sum_loss / len(train_loader), (100 * train_correct / len(train_dataset))))
        print('        val loss:%.03f        val acc:%.03f%%'
              %(sum_val_loss / len(test_loader), (100 * test_correct / len(test_dataset))))
        draw_epoch.append(epoch+1)       # 用于后续画图的数据
        draw_loss.append(sum_loss / len(train_loader))
        draw_train_acc.append(100 * train_correct / len(train_dataset))
        draw_val_loss.append(sum_val_loss / len(test_loader))
        draw_val_acc.append(100 * test_correct / len(test_dataset))
        np.savetxt('%s/train_loss.txt'%(path), draw_loss, fmt="%.3f")        # 保存损失数据
        np.savetxt('%s/train_acc.txt'%(path), draw_train_acc, fmt="%.3f")  # 保存准确率数据
        np.savetxt('%s/val_loss.txt'%(path), draw_val_loss, fmt="%.3f")     # 保存损失数据
        np.savetxt('%s/val_acc.txt'%(path), draw_val_acc, fmt="%.3f")  # 保存准确率数据
    print("train ready!")
    #############################################################################################
    #数据可视化
    #############################################################################################
    draw_result(draw_epoch, path)   # 绘图函数
    print("draw ready!")
    #############################################################################################
    #模型的存储和载入
    #############################################################################################
    torch.save(model.state_dict(), "parameter.pkl") #save
    print("save ready!")
    #############################################################################################

3.spider_iu.py

import re
import requests
from urllib import error
from bs4 import BeautifulSoup
import os
import torch
from torch.autograd import Variable
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from network import SiameNetwork
from utils import cv_imread
import cv2
from PIL import Image
import shutil
from get_face import find_face
# 设置参数
#############################################################################################
GET_PIC = 0    # 1 执行这步,0 不执行
GET_FACE = 0
GET_IU = 1
#############################################################################################
num = 0
numPicture = 0
file = ''
List = []
# 爬虫所用函数
#############################################################################################
def Find(url, A):
    global List
    print('正在检测图片总数,请稍等.....')
    t = 0
    i = 1
    s = 0
    while t < 1000:
        Url = url + str(t)
        try:
            # 这里搞了下
            Result = A.get(Url, timeout=7, allow_redirects=False)
        except BaseException:
            t = t + 60
            continue
        else:
            result = Result.text
            pic_url = re.findall('"objURL":"(.*?)",', result, re.S)  # 先利用正则表达式找到图片url
            s += len(pic_url)
            if len(pic_url) == 0:
                break
            else:
                List.append(pic_url)
                t = t + 60
    return s
def recommend(url):
    Re = []
    try:
        html = requests.get(url, allow_redirects=False)
    except error.HTTPError as e:
        return
    else:
        html.encoding = 'utf-8'
        bsObj = BeautifulSoup(html.text, 'html.parser')
        div = bsObj.find('div', id='topRS')
        if div is not None:
            listA = div.findAll('a')
            for i in listA:
                if i is not None:
                    Re.append(i.get_text())
        return Re
def dowmloadPicture(html, keyword):
    global num
    # t =0
    pic_url = re.findall('"objURL":"(.*?)",', html, re.S)  # 先利用正则表达式找到图片url
    print('找到关键词:' + keyword + '的图片,即将开始下载图片...')
    for each in pic_url:
        print('正在下载第' + str(num + 1) + '张图片,图片地址:' + str(each))
        try:
            if each is not None:
                pic = requests.get(each, timeout=7)
            else:
                continue
        except BaseException:
            print('错误,当前图片无法下载')
            continue
        else:
            string = file + r'\\' + keyword + '_' + str(num) + '.jpg'
            fp = open(string, 'wb')
            fp.write(pic.content)
            fp.close()
            num += 1
        if num >= numPicture:
            return
#############################################################################################
if __name__ == '__main__':  # 主函数入口
    # 爬虫部分,存放到 name + ‘文件'
    #############################################################################################
    if GET_PIC == 1:
        headers = {
            'Accept-Language': 'zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2',
            'Connection': 'keep-alive',
            'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Firefox/60.0',
            'Upgrade-Insecure-Requests': '1'
        }
        A = requests.Session()
        A.headers = headers
        tm = int(input('请输入每类图片的下载数量 '))
        numPicture = tm
        line_list = []
        with open('./name.txt', encoding='utf-8') as file:
            line_list = [k.strip() for k in file.readlines()]  # 用 strip()移除末尾的空格
        for word in line_list:
            url = 'https://image.baidu.com/search/flip?tn=baiduimage&ie=utf-8&word=' + word + '&pn='
            tot = Find(url, A)
            Recommend = recommend(url)  # 记录相关推荐
            print('经过检测%s类图片共有%d张' % (word, tot))
            file = word + '文件'
            y = os.path.exists(file)
            if y == 1:
                print('该文件已存在,无需创建')
            else:
                os.mkdir(file)
            t = 0
            tmp = url
            while t < numPicture:
                try:
                    url = tmp + str(t)
                    # result = requests.get(url, timeout=10)
                    # 这里搞了下
                    result = A.get(url, timeout=10, allow_redirects=False)
                    print(url)
                except error.HTTPError as e:
                    print('网络错误,请调整网络后重试')
                    t = t + 60
                else:
                    dowmloadPicture(result.text, word)
                    t = t + 60
            numPicture = numPicture + tm
        print('当前搜索结束,开始提取人脸')
    #############################################################################################
    # 将训练集和测试集中的raw图片处理,提取出人脸图片,从file+'文件'到‘待分辨人脸'
    ############################################################################################
    if GET_FACE == 1:
        if GET_PIC == 0:
            file = '韩国女艺人文件'
        raw_root = 'E:/Table/学习数据集/find_iu/'+ file + '/'
        img_raw = os.listdir(raw_root)
        new_path = 'E:/Table/学习数据集/find_iu/待分辨人脸/'
        n = 0
        for i in range(len(img_raw)):
            try:
                img = Image.open(raw_root + img_raw[i])
            except:
                print('a file error, continue')
                continue
            else:
                img_train = find_face(raw_root + img_raw[i])
                if img_train == None:
                    continue
                else:
                    img_train.save(new_path + '%d.JPG' % n)
                    print(raw_root + img_raw[i])
                    n += 1
        print('在%d张图片中,共找到%d张脸' % (len(img_raw), n))
        print('提取人脸结束,开始寻找IU')
    #############################################################################################
    # 开始判别,从'待分辨人脸‘中找出IU存放到'IU_pic‘
    #############################################################################################
    if GET_IU == 1:
        data_transform = transforms.Compose([
            # transforms.Grayscale(num_output_channels=1),  # 彩色图像转灰度图像num_output_channels默认1
            transforms.Resize(112),
            transforms.CenterCrop((112, 92)),  # 中心裁剪为112*92
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5, 0.5, 0.5])
            # transforms.Normalize(mean=0.5, std=0.5)
        ])
        device = torch.device('cuda')
        model = SiameNetwork().to(device)
        model.load_state_dict(torch.load('parameter.pkl'))  # load
        model.eval()
        judge_root = 'E:/Table/学习数据集/find_iu/待分辨人脸/'
        img_judge = os.listdir(judge_root)
        new_path = 'E:/Table/学习数据集/find_iu/IU_pic/'
        result = []
        n = 0
        for i in range(len(img_judge)):
            try:
                img = Image.open(judge_root + img_judge[i])
            except:
                print('a file error, continue')
                continue
            else:
                img = img.convert('RGB')
                print(judge_root + img_judge[i])
                input = data_transform(img)
                input = input.unsqueeze(0)  # 这里经过转换后输出的input格式是[C,H,W],网络输入还需要增加一维批量大小B
                # 增加一维,输出的img格式为[1,C,H,W]
                input = Variable(input.cuda())
                output = model(input)  # 将图片输入网络得到输出
                _, id = torch.max(output.data, 1)   # 0是IU,1是其他
                if id.item() == 0:
                    shutil.copy(judge_root + img_judge[i], new_path)
                    n += 1
        print('/n在%d张图片中,共找到%d张IU的图片'%(len(img_judge), n))
    #############################################################################################

4.file_deal.py

import os
raw_train_root_1 = 'E:/Table/学习数据集/find_iu/data/raw/train/IU/'
raw_train_root_2 = 'E:/Table/学习数据集/find_iu/data/raw/train/Other/'
raw_test_root_1 = 'E:/Table/学习数据集/find_iu/data/raw/test/IU/'
raw_test_root_2 = 'E:/Table/学习数据集/find_iu/data/raw/test/Other/'
raw_roots = [raw_train_root_1, raw_train_root_2, raw_test_root_1, raw_test_root_2]
for path in raw_roots:
    # 获取该目录下所有文件,存入列表中
    fileList = os.listdir(path)
    n = 0
    for i in fileList:
        # 设置旧文件名(就是路径+文件名)
        oldname = path + os.sep + fileList[n]  # os.sep添加系统分隔符
        # 设置新文件名
        newname = path + os.sep + str(n) + '.JPG'
        os.rename(oldname, newname)  # 用os模块中的rename方法对文件改名
        print(oldname, '======>', newname)
        n += 1

5.network.py

import torch
import torch.nn as nn
class SiameNetwork(nn.Module):
    def __init__(self):
        super(SiameNetwork, self).__init__()
        # input: h=112, w=92
        self.conv1 = torch.nn.Sequential(
            torch.nn.Conv2d(in_channels=3,  # 输入单通道
                            out_channels=16,  # 16个3*3卷积核
                            kernel_size=3,  # 卷积核尺寸
                            stride=2,  # 卷积核滑动步长, 1的话图片大小不变,2的话会大小会变为(h/2)*(w/2)
                            padding=1),  # 边缘填充大小,如果要保持原大小,kernel_size//2
            torch.nn.BatchNorm2d(16),  # 标准化,前面卷积后有16个图层
            torch.nn.ReLU()  # 激活函数
        )  # output: h=56, w=46
        self.conv2 = torch.nn.Sequential(
            torch.nn.Conv2d(16, 32, 3, 2, 1),
            torch.nn.BatchNorm2d(32),
            torch.nn.ReLU()
        )  # output: h=28, w=23
        self.conv3 = torch.nn.Sequential(
            torch.nn.Conv2d(32, 64, 3, 2, 1),
            torch.nn.BatchNorm2d(64),
            torch.nn.ReLU()
        )  # output: h=14, w=12
        self.conv4 = torch.nn.Sequential(
            torch.nn.Conv2d(64, 64, 2, 2, 0),
            torch.nn.BatchNorm2d(64),
            torch.nn.ReLU()
        )  # output: h=7, w=6
        self.mlp1 = torch.nn.Linear(7 * 6 * 64, 100)  # 需要计算conv4的输出尺寸,每次卷积的输出尺寸(size - kernal + 2*padding)/stride + 1
        self.mlp2 = torch.nn.Linear(100, 10)
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.mlp1(x.view(x.size(0), -1))  # view展平
        x = self.mlp2(x)
        return x

6.utils.py

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import cv2
# 绘制训练、测试的损失、准确度
#############################################################################################
def draw_result(draw_epoch, path):
    show_loss = np.loadtxt('%s/train_loss.txt' % (path))   # 读取txt文件,不同优化器的损失
    show_train_acc = np.loadtxt('%s/train_acc.txt' % (path))  # 读取不同模型的准确度
    show_val_loss = np.loadtxt('%s/val_loss.txt' % (path))  # 读取txt文件,不同优化器的损失
    show_val_acc = np.loadtxt('%s/val_acc.txt' % (path))  # 读取不同模型的准确度
    mpl.rc('font',family='Times New Roman', weight='semibold', size=9)  # 设置matplotlib中所有绘图风格的设置
    font1 = {'weight' : 'semibold', 'size' : 11}  #设置文字风格
    fig = plt.figure(figsize = (7,5))    #figsize是图片的大小`
    ax1 = fig.add_subplot(2, 2, 1)       # ax1是子图的名字
    ax1.plot(draw_epoch, show_loss,color = 'red', label = u'AdaPID', linewidth =1.0)
    ax1.legend()   #显示图例
    ax1.set_title('Training Loss', font1)
    ax1.set_xlabel(u'Epoch', font1)
    ax2 = fig.add_subplot(2, 2, 2)
    ax2.plot(draw_epoch, show_val_loss,color = 'red', label = u'Adam', linewidth =1.0)
    ax2.legend()   #显示图例
    ax2.set_title('Validation Loss', font1)
    ax2.set_xlabel(u'Epoch', font1)
    ax3 = fig.add_subplot(2, 2, 3)
    ax3.plot(draw_epoch, show_train_acc,color = 'red', label = u'Adam', linewidth =1.0)
    ax3.legend()   #显示图例
    ax3.set_title('Training Accuracy', font1)
    ax3.set_xlabel(u'Epoch', font1)
    ax4 = fig.add_subplot(2, 2, 4)
    ax4.plot(draw_epoch, show_val_acc,color = 'red', label = u'Adam', linewidth =1.0)
    ax4.legend()   #显示图例
    ax4.set_title('Validation Accuracy', font1)
    ax4.set_xlabel(u'Epoch', font1)
    plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=0.45) # hspace为子图上下间距
    plt.savefig('%s/show_curve.jpg' % (path), dpi=300)
#############################################################################################
# 用于解决cv.imread不能读取中文路径的问题
#############################################################################################
def cv_imread(filePath):
    # 核心就是下面这句,一般直接用这句就行,直接把图片转为mat数据
    cv_img = cv2.imdecode(np.fromfile(filePath, dtype=np.uint8), -1)
    # imdecode读取的是rgb,如果后续需要opencv处理的话,需要转换成bgr,转换后图片颜色会变化
    # cv_img=cv2.cvtColor(cv_img,cv2.COLOR_RGB2BGR)
    return cv_img
#############################################################################################

总结

总体而言,这是一个新人的兴趣之作,但是限于GPU性能无法使用太复杂的网络,最后识别的效果不佳,若读者有兴趣,也可以去替换一下网络,改善一下数据集,尝试提升识别性能。更多相关人脸识别内容请搜索我们以前的文章或继续浏览下面的相关文章,希望大家以后多多支持我们!

(0)

相关推荐

  • 用Python做个个性的动画挂件让桌面不单调

    目录 前言 一.核心功能设计 二.实现步骤 1. 解析提取,修改图片 2.初始化动画挂件 3.动画挂件功能实现 4.打包配置 前言 前段时间,写了篇博客自己用python做的一款超炫酷音乐播放器.有粉丝问我,音乐播放器为什么要用PyQt5,效果是不是比Tkinter赞?PyQt5真的可以实现这些炫酷的UI画面吗?之前没接触过PyQt5,能不能多分享一些这方面的开发案例? 今天就带大家,一起用Python的PyQt5开发一个有趣的自定义桌面动画挂件,看看实现的动画挂件效果! 下面,我们开始介绍这个

  • 使用python svm实现直接可用的手写数字识别

    目录 python svm实现手写数字识别--直接可用 1.训练 1.1.训练数据集下载--已转化成csv文件 1.2 .训练源码 2.预测单张图片 2.1.待预测图像 2.2.预测源码 2.3.预测结果 python svm实现手写数字识别--直接可用 最近在做个围棋识别的项目,需要识别下面的数字,如下图: 我发现现在网上很多代码是良莠不齐,-真是一言难尽,于是记录一下,能够运行成功并识别成功的一个源码. 1.训练 1.1.训练数据集下载--已转化成csv文件 下载地址 1.2 .训练源码 t

  • 自己用python做的一款超炫酷音乐播放器

    目录 前言 一.核心功能设计 UI设计排版布局 关键字音乐列表爬虫 音乐播放 附加功能 二.实现步骤 1. UI设计排版布局 2. 关键字音乐列表爬虫 3. 音乐播放 4. 附加功能 三.结束语 前言 晚上坐在电脑面前,想着一边撸代码,一边听音乐.搜了搜自己想听的歌,奈何好多歌曲都提示需要版权,无法播放! 没办法,想听歌还是得靠自己解决!今天就一起用python自制一款炫酷的音乐播放器吧~ 首先一起来看看最终实现的音乐播放器效果: 下面,我们开始介绍这个音乐播放器的制作过程. 一.核心功能设计

  • 详细过程带你用Python做车牌自动识别系统

    目录 前言 一.核心功能设计 UI设计排版布局 车牌识别 车牌信息显示存储 二.实现步骤 1. UI设计排版布局 2. 车牌识别 3. 车牌信息显示存储 3.1 车牌信息显示: 3.2 信息导出存储: 前言 前段时间,用PyQt5写了两篇文章,自己用python做的一款超炫酷音乐播放器.用Python做个个性的动画挂件让桌面不单调.有粉丝问我,为什么要用PyQt5?之前没接触过PyQt5,能不能多分享一些这方面的开发案例? 今天就继续给大家分享一个实战案例,带大家一起用Python的PyQt5开

  • Python做个自定义动态壁纸还可以放视频

    目录 前言 一.核心功能设计 二.实现步骤 1. UI排版布局设计 2. 视频加载预览 3. 动态壁纸功能实现 4. 关闭动态壁纸 前言 前段时间,用PyQt5写了几篇文章,关于Python自制一款炫酷音乐播放器.自定义桌面动画挂件.车牌自动识别系统.今天就继续给大家分享一个实战案例,带大家一起用Python的PyQt5开发一个自定义动态桌面壁纸,好玩又有趣! 首先一起来看看最终实现的自定义动态壁纸效果: 下 面,我们开始介绍这个自定义动态桌面的制作过程. 一.核心功能设计 总体来说,我们需要实

  • 基础语音识别-食物语音识别baseline(CNN)

    MFCC 梅尔倒谱系数(Mel-scaleFrequency Cepstral Coefficients,简称MFCC). MFCC通常有以下之过程: 将一段语音信号分解为多个讯框. 将语音信号预强化,通过一个高通滤波器. 进行傅立叶变换,将信号变换至频域. 将每个讯框获得的频谱通过梅尔滤波器(三角重叠窗口),得到梅尔刻度. 在每个梅尔刻度上提取对数能量. 对上面获得的结果进行离散傅里叶反变换,变换到倒频谱域. MFCC就是这个倒频谱图的幅度(amplitudes).一般使用12个系数,与讯框能

  • 人脸识别具体案例(李智恩)

    项目环境:python3.6 一.项目结构 二.数据集准备 数据集准备分为两步: 获取图片. 提取人脸. 1.获取图片 首先可以利用爬虫,从百度图片上批量下载图片,但注意下载数据集所用的关键词不要和之后识别任务的关键词太接近,否则若有图片重合,就会产生"识别得很准"的错觉.下面的程序为爬虫部分,在name.txt文件中写好要搜索的关键词,即可使用. # 爬虫部分,存放到 name + '文件' ##############################################

  • C#实现基于ffmpeg加虹软的人脸识别的示例

    关于人脸识别 目前的人脸识别已经相对成熟,有各种收费免费的商业方案和开源方案,其中OpenCV很早就支持了人脸识别,在我选择人脸识别开发库时,也横向对比了三种库,包括在线识别的百度.开源的OpenCV和商业库虹软(中小型规模免费). 百度的人脸识别,才上线不久,文档不太完善,之前联系百度,官方也给了我基于Android的Example,但是不太符合我的需求,一是照片需要上传至百度服务器(这个是最大的问题),其次,人脸的定位需要自行去实现(捕获到人脸后上传进行识别). OpenCV很早以前就用过,

  • 详解如何用OpenCV + Python 实现人脸识别

    下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数

  • Python 40行代码实现人脸识别功能

    前言 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了.这些人里包括曾经的我自己.其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难.今天我们就来看看如何在40行代码以内简单地实现人脸识别. 一点区分 对于大部分人来说,区分人脸检测和人脸识别完全不是问题.但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的.其实,人脸检测解决的问题是确定一张图上有木有人脸,而人

  • 人脸识别测颜值、测脸龄、测相似度微信接口

    人脸评分微信接口,获取微信图片地址,curl请求face++接口.解析json数据,计算颜值.返回用户. 颜值匹配版,请到腾讯微校上体验.http://weixiao.qq.com <?php /** * 人脸识别测颜值.测脸龄.测相似度微信接口 * @Created by MOS.Ving. * @Author: MOS.Ving * @Mail 904679843@qq.com * @Date: 2016-01-31 */ define("TOKEN", 'weixin');

  • 基于OpenCV的PHP图像人脸识别技术

    openCV是一个开源的用C/C++开发的计算机图形图像库,非常强大,研究资料很齐全.本文重点是介绍如何使用php来调用其中的局部的功能.人脸侦查技术只是openCV一个应用分支. 1.安装 从源代码编译成一个动态的so文件. 1.1.安装 OpenCV (OpenCV 1.0.0) 下载地址:http://sourceforge.net/project/showfiles.php?group_id=22870&package_id=16948 #tar xvzf OpenCV-1.0.0.ta

  • PHP使用Face++接口开发微信公众平台人脸识别系统的方法

    本文实例讲述了PHP使用Face++接口开发微信公众平台人脸识别系统的方法.分享给大家供大家参考.具体如下: 效果图如下: 具体步骤如下: 首先,先登录Face++的官网注册账号:官网链接 注册之后会获取到api_secret和api_key,这些在调用接口的时候需要用到. 然后接下来的就是使用PHP脚本调用API了. 在使用PHP开发微信公共平台的时候,推荐使用Github上的一款不错的框架:wechat-php-sdk 对于微信的常用接口做了一些封装,核心文件wechat.class.php

  • OpenCV实现人脸识别

    主要有以下步骤: 1.人脸检测 2.人脸预处理 3.从收集的人脸训练机器学习算法 4.人脸识别 5.收尾工作 人脸检测算法: 基于Haar的脸部检测器的基本思想是,对于面部正面大部分区域而言,会有眼睛所在区域应该比前额和脸颊更暗,嘴巴应该比脸颊更暗等情形.它通常执行大约20个这样的比较来决定所检测的对象是否为人脸,实际上经常会做上千次. 基于LBP的人脸检测器基本思想与基于Haar的人脸检测器类似,但它比较的是像素亮度直方图,例如,边缘.角落和平坦区域的直方图. 这两种人脸检测器可通过训练大的图

  • opencv 做人脸识别 opencv 人脸匹配分析

    机器学习 机器学习的目的是把数据转换成信息. 机器学习通过从数据里提取规则或模式来把数据转成信息. 人脸识别 人脸识别通过级联分类器对特征的分级筛选来确定是否是人脸. 每个节点的正确识别率很高,但正确拒绝率很低. 任一节点判断没有人脸特征则结束运算,宣布不是人脸. 全部节点通过,则宣布是人脸. 工业上,常用人脸识别技术来识别物体. 对图片进行识别 复制代码 代码如下: #include "opencv2/core/core.hpp" #include "opencv2/obj

  • python使用opencv进行人脸识别

    环境 ubuntu 12.04 LTS python 2.7.3 opencv 2.3.1-7 安装依赖 sudo apt-get install libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy 示例代码 #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv d

随机推荐