浅谈pytorch中stack和cat的及to_tensor的坑

初入计算机视觉遇到的一些坑

1.pytorch中转tensor

x=np.random.randint(10,100,(10,10,10))
x=TF.to_tensor(x)
print(x)

这个函数会对输入数据进行自动归一化,比如有时候我们需要将0-255的图片转为numpy类型的数据,则会自动转为0-1之间

2.stack和cat之间的差别

stack

x=torch.randn((1,2,3))
y=torch.randn((1,2,3))
z=torch.stack((x,y))#默认dim=0
print(z.shape)
#torch.Size([2, 1, 2, 3])

所以stack的之后的数据也就很好理解了,z[0,...]的数据是x,z[1,...]的数据是y。

cat

z=torch.cat((x,y))
print(z.size())
#torch.Size([2, 2, 3])

cat之后的数据 z[0,:,:]是x的值,z[1,:,:]是y的值。

其中最关键的是stack之后的数据的size会多出一个维度,而cat则不会,有一个很简单的例子来说明一下,比如要训练一个检测模型,label是一些标记点,eg:[x1,y1,x2,y2]

送入网络的加上batchsize则时Size:[batchsize,4],如果我已经有了两堆数据,data1:Size[128,4],data2:Size[128,4],需要将这两个数据合在一起的话目标data:Size[256,4]。

显然我们要做的是:torch.cat((data1,data2))

如果我们的数据是这样:有100个label,每一个label被放进一个list(data)中,[[x1,y1,x2,y2],[x1,y1,x2,y2],...]其中data是一个list长度为100,而list中每一个元素是张图片的标签,size为[4]我们需要将他们合一起成为一Size:[100,4]的的数据。

显然我们要做的是torch.stack(data)。而且torch.stack的输入参数为list类型!

补充:pytorch中的cat、stack、tranpose、permute、unsqeeze

pytorch中提供了对tensor常用的变换操作。

cat 连接

对数据沿着某一维度进行拼接。cat后数据的总维数不变。

比如下面代码对两个2维tensor(分别为2*3,1*3)进行拼接,拼接完后变为3*3还是2维的tensor。

代码如下:

import torch
torch.manual_seed(1)
x = torch.randn(2,3)
y = torch.randn(1,3)
print(x,y)

结果:

0.6614 0.2669 0.0617
0.6213 -0.4519 -0.1661
[torch.FloatTensor of size 2x3]

-1.5228 0.3817 -1.0276
[torch.FloatTensor of size 1x3]

将两个tensor拼在一起:

torch.cat((x,y),0)

结果:

0.6614 0.2669 0.0617
0.6213 -0.4519 -0.1661
-1.5228 0.3817 -1.0276
[torch.FloatTensor of size 3x3]

更灵活的拼法:

torch.manual_seed(1)
x = torch.randn(2,3)
print(x)
print(torch.cat((x,x),0))
print(torch.cat((x,x),1))

结果

// x
0.6614 0.2669 0.0617
0.6213 -0.4519 -0.1661
[torch.FloatTensor of size 2x3]

// torch.cat((x,x),0)
0.6614 0.2669 0.0617
0.6213 -0.4519 -0.1661
0.6614 0.2669 0.0617
0.6213 -0.4519 -0.1661
[torch.FloatTensor of size 4x3]

// torch.cat((x,x),1)
0.6614 0.2669 0.0617 0.6614 0.2669 0.0617
0.6213 -0.4519 -0.1661 0.6213 -0.4519 -0.1661
[torch.FloatTensor of size 2x6]

stack,增加新的维度进行堆叠

而stack则会增加新的维度。

如对两个1*2维的tensor在第0个维度上stack,则会变为2*1*2的tensor;在第1个维度上stack,则会变为1*2*2的tensor。

见代码:

a = torch.ones([1,2])
b = torch.ones([1,2])
c= torch.stack([a,b],0) // 第0个维度stack

输出:

(0 ,.,.) =
1 1

(1 ,.,.) =
1 1
[torch.FloatTensor of size 2x1x2]

c= torch.stack([a,b],1) // 第1个维度stack

输出:

(0 ,.,.) =

1 1

1 1

[torch.FloatTensor of size 1x2x2]

transpose ,两个维度互换

代码如下:

torch.manual_seed(1)
x = torch.randn(2,3)
print(x)

原来x的结果:

0.6614 0.2669 0.0617

0.6213 -0.4519 -0.1661

[torch.FloatTensor of size 2x3]

将x的维度互换

x.transpose(0,1)

结果

0.6614 0.6213

0.2669 -0.4519

0.0617 -0.1661

[torch.FloatTensor of size 3x2]

permute,多个维度互换,更灵活的transpose

permute是更灵活的transpose,可以灵活的对原数据的维度进行调换,而数据本身不变。

代码如下:

x = torch.randn(2,3,4)
print(x.size())
x_p = x.permute(1,0,2) # 将原来第1维变为0维,同理,0→1,2→2
print(x_p.size())

结果:

torch.Size([2, 3, 4])

torch.Size([3, 2, 4])

squeeze 和 unsqueeze

常用来增加或减少维度,如没有batch维度时,增加batch维度为1。

squeeze(dim_n)压缩,减少dim_n维度 ,即去掉元素数量为1的dim_n维度。

unsqueeze(dim_n),增加dim_n维度,元素数量为1。

上代码:

# 定义张量
import torch

b = torch.Tensor(2,1)
b.shape
Out[28]: torch.Size([2, 1])

# 不加参数,去掉所有为元素个数为1的维度
b_ = b.squeeze()
b_.shape
Out[30]: torch.Size([2])

# 加上参数,去掉第一维的元素为1,不起作用,因为第一维有2个元素
b_ = b.squeeze(0)
b_.shape
Out[32]: torch.Size([2, 1])

# 这样就可以了
b_ = b.squeeze(1)
b_.shape
Out[34]: torch.Size([2])

# 增加一个维度
b_ = b.unsqueeze(2)
b_.shape
Out[36]: torch.Size([2, 1, 1])

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch中tensor的合并与截取方法

    合并: torch.cat(inputs=(a, b), dimension=1) e.g. x = torch.cat((x,y), 0) 沿x轴合并 截取: x[:, 2:4] 以上这篇pytorch中tensor的合并与截取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • PyTorch中Tensor的拼接与拆分的实现

    拼接张量:torch.cat() .torch.stack() torch.cat(inputs, dimension=0) → Tensor 在给定维度上对输入的张量序列 seq 进行连接操作 举个例子: >>> import torch >>> x = torch.randn(2, 3) >>> x tensor([[-0.1997, -0.6900, 0.7039], [ 0.0268, -1.0140, -2.9764]]) >>&

  • PyTorch中 tensor.detach() 和 tensor.data 的区别详解

    PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad = False, 这样有些时候是不安全的, 因为 x.data 不能被 autograd 追踪求微分 . .detach() 返回相同数据的 tensor ,且 requires_grad=False ,但能通过 in-place 操作报告给 autograd 在进行反向传播的时候. 举例: ten

  • 对PyTorch torch.stack的实例讲解

    不是concat的意思 import torch a = torch.ones([1,2]) b = torch.ones([1,2]) torch.stack([a,b],1) (0 ,.,.) = 1 1 1 1 [torch.FloatTensor of size 1x2x2] 以上这篇对PyTorch torch.stack的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 浅谈pytorch中stack和cat的及to_tensor的坑

    初入计算机视觉遇到的一些坑 1.pytorch中转tensor x=np.random.randint(10,100,(10,10,10)) x=TF.to_tensor(x) print(x) 这个函数会对输入数据进行自动归一化,比如有时候我们需要将0-255的图片转为numpy类型的数据,则会自动转为0-1之间 2.stack和cat之间的差别 stack x=torch.randn((1,2,3)) y=torch.randn((1,2,3)) z=torch.stack((x,y))#默

  • 浅谈Pytorch中的自动求导函数backward()所需参数的含义

    正常来说backward( )函数是要传入参数的,一直没弄明白backward需要传入的参数具体含义,但是没关系,生命在与折腾,咱们来折腾一下,嘿嘿. 对标量自动求导 首先,如果out.backward()中的out是一个标量的话(相当于一个神经网络有一个样本,这个样本有两个属性,神经网络有一个输出)那么此时我的backward函数是不需要输入任何参数的. import torch from torch.autograd import Variable a = Variable(torch.Te

  • 浅谈Pytorch中的torch.gather函数的含义

    pytorch中的gather函数 pytorch比tensorflow更加编程友好,所以准备用pytorch试着做最近要做的一些实验. 立个flag开始学习pytorch,新开一个分类整理学习pytorch中的一些踩到的泥坑. 今天刚开始接触,读了一下documentation,写一个一开始每太搞懂的函数gather b = torch.Tensor([[1,2,3],[4,5,6]]) print b index_1 = torch.LongTensor([[0,1],[2,0]]) ind

  • 浅谈pytorch中的BN层的注意事项

    最近修改一个代码的时候,当使用网络进行推理的时候,发现每次更改测试集的batch size大小竟然会导致推理结果不同,甚至产生错误结果,后来发现在网络中定义了BN层,BN层在训练过程中,会将一个Batch的中的数据转变成正太分布,在推理过程中使用训练过程中的参数对数据进行处理,然而网络并不知道你是在训练还是测试阶段,因此,需要手动的加上,需要在测试和训练阶段使用如下函数. model.train() or model.eval() BN类的定义见pytorch中文参考文档 补充知识:关于pyto

  • 浅谈PyTorch中in-place operation的含义

    in-place operation在pytorch中是指改变一个tensor的值的时候,不经过复制操作,而是直接在原来的内存上改变它的值.可以把它成为原地操作符. 在pytorch中经常加后缀"_"来代表原地in-place operation,比如说.add_() 或者.scatter().python里面的+=,*=也是in-place operation. 下面是正常的加操作,执行结束加操作之后x的值没有发生变化: import torch x=torch.rand(2) #t

  • 浅谈pytorch中torch.max和F.softmax函数的维度解释

    在利用torch.max函数和F.Ssoftmax函数时,对应该设置什么维度,总是有点懵,遂总结一下: 首先看看二维tensor的函数的例子: import torch import torch.nn.functional as F input = torch.randn(3,4) print(input) tensor([[-0.5526, -0.0194, 2.1469, -0.2567], [-0.3337, -0.9229, 0.0376, -0.0801], [ 1.4721, 0.1

  • 浅谈Python3中datetime不同时区转换介绍与踩坑

    最近的项目需要根据用户所属时区制定一些特定策略,学习.应用了若干python3的时区转换相关知识,这里整理一部分记录下来. 下面涉及的几个概念及知识点: GMT时间:Greenwich Mean Time, 格林尼治平均时间 UTC时间:Universal Time Coordinated 世界协调时,可以认为是更精准的GMT时间,但两者误差极小,在1s以内,一般可视为等同 LMT:Local Mean Time, 当地标准时间 Python中的北京时间:Python的标准timezone中信息

  • 浅谈pytorch中的nn.Sequential(*net[3: 5])是啥意思

    看到代码里面有这个 1 class ResNeXt101(nn.Module): 2 def __init__(self): 3 super(ResNeXt101, self).__init__() 4 net = resnext101() # print(os.getcwd(), net) 5 net = list(net.children()) # net.children()得到resneXt 的表层网络 # for i, value in enumerate(net): # print(

  • 浅谈Pytorch中autograd的若干(踩坑)总结

    关于Variable和Tensor 旧版本的Pytorch中,Variable是对Tensor的一个封装:在Pytorch大于v0.4的版本后,Varible和Tensor合并了,意味着Tensor可以像旧版本的Variable那样运行,当然新版本中Variable封装仍旧可以用,但是对Varieble操作返回的将是一个Tensor. import torch as t from torch.autograd import Variable a = t.ones(3,requires_grad=

  • 浅谈pytorch中的dropout的概率p

    最近需要训练一个模型,在优化模型时用了dropout函数,为了减少过拟合. 训练的时候用dropout,测试的时候不用dropout.刚开始以为p是保留神经元的比率,训练设置0.5,测试设置1,loss根本没减小过,全设置成1也是一样的效果,后来就考虑到是不是p设置错了. 上网一搜,果然是的!!!p的含义理解错了!不是保留的,而是不保留的! 具体的代码为: x2 = F.dropout(x1, p) x1是上一层网络的输出,p是需要删除的神经元的比例. 当p=0时,保留全部神经元更新.当p=1时

随机推荐