解决Python访问MySQL数据库速度慢的问题

这两天写了个作业,关于学生选课系统的,随后完成后也会发布到我的博客里面。室友的访问速度几乎是毫秒级,而我的起码要等上四五秒钟。

我总结的影响访问速度的原因主要有以下几种:

1、主机名

2、重复开、关数据库

3、后台数据库中的数据过多,没做数据优化导致后台查询数据很慢

解决方法:

1、用IP地址代替localhost:mysql -h 127.0.0.1 -uroot -p

2、禁止mysql做域名解析: MySQL在处理新的线程连接请求时,会尝试进行DNS解析,如果在host

cache和Hosts里找不到,处理起来就会很慢

因此最直接简便的方法就是禁用该反向解析功能,可以通过修改MySQL的配置文件实现,Linux下是my.cnf文件,windows下是my.ini文件,在配置

文件[mysqld]下新增如下一行代码: skip-name-resolve

然后重启MySQL服务,再次连接发现已是秒连了。

这个方案的不足之处就是,以后在使用grant对用户进行授权时只能使用IP格式,而不能使用主机名称了。

通过修改系统hosts文件也可以实现,举例来说,我想解决192.168.1.100远程连接MySQL服务器缓慢的问题,只需要在MySQL库所在服务器的hosts文件中新增一条记录如下:192.168.1.100

test.com保存退出,再次远程连接该MySQL库,同样很快。之所以说绝,是因为这样设置,你添加记录的

192.168.1.100远程连接速度变快了,其他主机连接速度跟之前一样慢。该方法同样可以解决ssh远程连接某主机响应很慢的问题,原理一样。

3、开一次数据库,等所有数据库操作全部完成后再关闭游标关闭数据库,也能相对的加快访问速度。

补充:python | MySQL 处理海量数据时优化查询速度方法

最近一段时间由于工作需要,开始关注针对Mysql数据库的select查询语句的相关优化方法。

由于在参与的实际项目中发现当mysql表的数据量达到百万级时,普通SQL查询效率呈直线下降,而且如果where中的查询条件较多时,其查询速度简直无法容忍。曾经测试对一个包含400多万条记录(有索引)的表执行一条条件查询,其查询时间竟然高达40几秒,相信这么高的查询延时,任何用户都会抓狂。因此如何提高sql语句查询效率,显得十分重要。以下是网上流传比较广泛的30种SQL查询语句优化方法:

1、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

2、对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

3、应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num is null

可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:

select id from t where num=0

4、尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num=10 or num=20

可以这样查询:

select id from t where num=10
union all
select id from t where num=20

5、下面的查询也将导致全表扫描:(不能前置百分号)

select id from t where name like ‘�c%'

若要提高效率,可以考虑全文检索。

6、in 和 not in 也要慎用,否则会导致全表扫描,如:

select id from t where num in(1,2,3)

对于连续的数值,能用 between 就不要用 in 了:

select id from t where num between 1 and 3

7、如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:

select id from t where num=@num

可以改为强制查询使用索引:

select id from t with(index(索引名)) where num=@num

8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where num/2=100

应改为:

select id from t where num=100*2

9、应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where substring(name,1,3)='abc'–name以abc开头的id
select id from t where datediff(day,createdate,'2005-11-30′)=0–'2005-11-30′生成的id

应改为:

select id from t where name like ‘abc%'
select id from t where createdate>='2005-11-30′ and createdate<'2005-12-1′

10、不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11、在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使 用,并且应尽可能的让字段顺序与索引顺序相一致。

12、不要写一些没有意义的查询,如需要生成一个空表结构:

select col1,col2 into #t from t where 1=0

这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:

create table #t(…)

13、很多时候用 exists 代替 in 是一个好的选择:

select num from a where num in(select num from b)

用下面的语句替换:

select num from a where exists(select 1 from b where num=a.num)

14、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段 sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

15、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。

16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

17、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会 逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

18、尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

19、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

20、尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

21、避免频繁创建和删除临时表,以减少系统表资源的消耗。

22、临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使 用导出表。

23、在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

24、如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

25、尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

26、使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

27、与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

28、在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。

29、尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

30、尽量避免大事务操作,提高系统并发能力。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • Python爬取腾讯疫情实时数据并存储到mysql数据库的示例代码

    思路: 在腾讯疫情数据网站F12解析网站结构,使用Python爬取当日疫情数据和历史疫情数据,分别存储到details和history两个mysql表. ①此方法用于爬取每日详细疫情数据 import requests import json import time def get_details(): url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5&callback=jQuery3410284820553141302

  • MySQL和Python交互的示例

    一.准备数据 创建数据表 -- 创建 "京东" 数据库 create database jing_dong charset=utf8; -- 使用 "京东" 数据库 use jing_dong; -- 创建一个商品goods数据表 create table goods( id int unsigned primary key auto_increment not null, name varchar(150) not null, cate_name varchar(

  • python 实现mysql自动增删分区的方法

    连接mysql #!/usr/bin/python #-*- coding:utf-8 -*- import time import pymysql class connect_mysql(object): def __init__(self, host, dbname): self.mysql_config = { 'host': host, 'port': 33071, 'user': 'sysbench', 'passwd': '970125', 'db': dbname, 'charse

  • python操作mysql、excel、pdf的示例

    一.学习如何定义一个对象 代码: #!/usr/bin/python # -*- coding: UTF-8 -*- # 1. 定义Person类 class Person: def __init__(self, name, age): self.name = name self.age = age def watch_tv(self): print(f'{self.name} 看电视') # 2. 定义loop函数 # 打印 1-max 中的奇数 def test_person(): pers

  • Python爬虫爬取全球疫情数据并存储到mysql数据库的步骤

    思路:使用Python爬虫对腾讯疫情网站世界疫情数据进行爬取,封装成一个函数返回一个    字典数据格式的对象,写另一个方法调用该函数接收返回值,和数据库取得连接后把    数据存储到mysql数据库. 一.mysql数据库建表 CREATE TABLE world( id INT(11) NOT NULL AUTO_INCREMENT, dt DATETIME NOT NULL COMMENT '日期', c_name VARCHAR(35) DEFAULT NULL COMMENT '国家'

  • 解决Python访问MySQL数据库速度慢的问题

    这两天写了个作业,关于学生选课系统的,随后完成后也会发布到我的博客里面.室友的访问速度几乎是毫秒级,而我的起码要等上四五秒钟. 我总结的影响访问速度的原因主要有以下几种: 1.主机名 2.重复开.关数据库 3.后台数据库中的数据过多,没做数据优化导致后台查询数据很慢 解决方法: 1.用IP地址代替localhost:mysql -h 127.0.0.1 -uroot -p 2.禁止mysql做域名解析: MySQL在处理新的线程连接请求时,会尝试进行DNS解析,如果在host cache和Hos

  • python访问mysql数据库的实现方法(2则示例)

    本文实例讲述了python访问mysql数据库的实现方法.分享给大家供大家参考,具体如下: 首先安装与Python版本匹配的MySQLdb 示例一 import MySQLdb conn=MySQLdb.connect(user='root',passwd='123',db='example') cur=conn.cursor() cur.execute("select id,lastname,firstname, date_format(dob,'%Y-%m-%d %H-%i-%s'),pho

  • Python访问MySQL封装的常用类实例

    本文实例讲述了Python访问MySQL封装的常用类.分享给大家供大家参考.具体如下: python访问mysql比较简单,下面整理的就是一个很简单的Python访问MySQL数据库类. 自己平时也就用到两个mysql函数:查询和更新,下面是自己常用的函数的封装,大家拷贝过去直接可以使用. 文件名:DBUtil.py 复制代码 代码如下: # -*- encoding:utf8 -*- ''' @author: crazyant.net @version: 2013-10-22   封装的mys

  • 使用python将mysql数据库的数据转换为json数据的方法

    由于产品运营部需要采用第三方个推平台,来推送消息.如果手动一个个键入字段和字段值,容易出错,且非常繁琐,需要将mysql的数据转换为json数据,直接复制即可. 本文将涉及到如何使用Python访问Mysql数据库及读取获取数据(前提需要安装MySQLdb第三方库哦),以及如何将数据转换为json数据,最后保存成文件输出. 代码如下:注释比较详细了. # coding=utf-8 ''' Created on 2016-10-26 @author: Jennifer Project:读取mysq

  • Linux下通过python访问MySQL、Oracle、SQL Server数据库的方法

    本文档主要描述了Linux下python数据库驱动的安装和配置,用来实现在Linux平台下通过python访问MySQL.Oracle.SQL Server数据库. 其中包括以下几个软件的安装及配置: unixODBC FreeTDS pyodbc cx_Oracle 欢迎转载,请注明作者.出处. 作者:张正 QQ:176036317 如有疑问,欢迎联系. 本文档主要描述了Linux下python数据库驱动的安装和配置,用来实现在Linux平台下通过python访问MySQL.Oracle.SQ

  • python使用MySQLdb访问mysql数据库的方法

    本文实例讲述了python使用MySQLdb访问mysql数据库的方法.分享给大家供大家参考.具体如下: #!/usr/bin/python import MySQLdb def doInsert(cursor,db): #insert # Prepare SQL query to INSERT a record into the database. sql = "UPDATE EMPLOYEE SET AGE = AGE+1 WHERE SEX = '%c'" %('M') try:

  • 浅谈Python访问MySQL的正确姿势

    Py2 时代,访问 MySQL 数据库的模块除了 PyMySQL 和 MySQL-python 之外,还有以速度见长的 Umysql,以及非常小众的 Oursql 模块.进入了 Py3 时代之后,PyMySQL 与时俱进,顺利升级到 Py3 版本, MySQL-python 则被它的一个 Py3 分支--mysqlclient 取代,而 Umysql 和 Oursql 则停留在了属于它们的那个时代. 下表给出了 PyMySQL 模块和 mysqlclient 模块在安装方式.导入方式.支持的Py

  • Python操作MySQL数据库的示例代码

    1. MySQL Connector 1.1 创建连接 import mysql.connector config={ "host":"localhost","port":"3306", "user":"root","password":"password", "database":"demo" } con=

  • Python操作MySQL数据库9个实用实例

    在Windows平台上安装mysql模块用于Python开发 用python连接mysql的时候,需要用的安装版本,源码版本容易有错误提示.下边是打包了32与64版本. MySQL-python-1.2.3.win32-py2.7.exe MySQL-python-1.2.3.win-amd64-py2.7.exe 实例 1.取得 MYSQL 的版本 # -*- coding: UTF-8 -*- #安装 MYSQL DB for python import MySQLdb as mdb con

  • Python连接mysql数据库的正确姿势

    Python 数据库接口支持非常多的数据库,你可以选择适合你项目的数据库: GadFly mSQL MySQL PostgreSQL Microsoft SQL Server 2000 Informix Interbase Oracle Sybase 不同的数据库你需要下载不同的DB API模块,例如你需要访问Oracle数据库和Mysql数据,你需要下载Oracle和MySQL数据库模块. DB-API 是一个规范. 它定义了一系列必须的对象和数据库存取方式, 以便为各种各样的底层数据库系统和

随机推荐