详解如何用Python实现感知器算法

目录
  • 一、题目
  • 二、数学求解过程
  • 三、感知器算法原理及步骤
  • 四、python代码实现及结果

一、题目

二、数学求解过程



该轮迭代分类结果全部正确,判别函数为g(x)=-2x1+1

三、感知器算法原理及步骤

四、python代码实现及结果

(1)由数学求解过程可知:

(2)程序运行结果

(3)绘图结果

'''
20210610 Julyer 感知器
'''
import numpy as np
import matplotlib.pyplot as plt

def get_zgxl(xn, a):
    '''
    获取增广向量
    :param x: 数组
    :param a: 1或-1
    :return:
    '''
    temp = []
    if a == 1:
        xn.append(1)
    if a == -1:
        for i in range(len(xn)):
            temp.append(xn[i]*(-1))
        temp.append(-1)
        xn = temp
    # print('xn:'+ str(np.array(x).reshape(-1, 1)))
    return np.array(xn).reshape(-1, 1)

def calculate_w(w, xn):
    '''
    已知xn和初始值,计算w
    :param w: 列向量 --> wT:行向量
    :param xn: 列向量
    :return:
    '''
    # wT = w.reshape(1, -1)  # 列向量转变为行向量,改变w
    wT = w.T   # 列向量转变为行向量,不改变w
    wTx = np.dot(wT, xn).reshape(-1)  # 行向量乘以列向量, 维度降为1。
    #wTx = wT@xn  # 行向量乘以列向量
    if wTx > 0:
        w_value = w
    else:
        w_value = np.add(w, xn)

    # print("w_update的shape" + str(w_update.shape))
    #print("wTx:" + str(wTx))
    return w_value, wTx     # w_value为列向量, wTx为一个数

def fit_one(w1, x1, x2, x3, x4):
    '''
    完成一轮迭代,遍历一次数据,更新到w5。
    :param w1: 初始值
    :param x1:
    :param x2:
    :param x3:
    :param x4:
    :return: 返回w5和wTx的列表。
    '''
    wTx_list = []
    update_w = w1

    for i in range(0, len(x_data)): #len计算样本个数,通过循环更新w
        update_w, wTx = calculate_w(update_w, x_data[i])
        wTx_list.append(wTx)

    #print(wTx_list)
    return update_w, wTx_list

def draw_plot(class1, class2, update_w):
    plt.figure()

    x_coordinate = []
    y_coordinate = []
    for i in range(len(class1)):
        x_coordinate.append(class1[i][0])
        y_coordinate.append(class1[i][1])
    plt.scatter(x_coordinate, y_coordinate, color='orange', label='class1')

    x_coordinate = []
    y_coordinate = []
    for i in range(len(class2)):
        x_coordinate.append(class2[i][0])
        y_coordinate.append(class2[i][1])
    plt.scatter(x_coordinate, y_coordinate, color='green', label='class2')

    w_reshape = update_w.reshape(-1)
    #print

    x = np.linspace(0, 2, 5)
    if w_reshape[1] == 0:
        plt.axvline(x = (-1) * w_reshape[2]/w_reshape[0])
    else:
        plt.plot(x, (x*w_reshape[0]*(-1) + w_reshape[2]*(-1))/w_reshape[1])

    plt.title('result of perception')
    plt.xlabel('x1')
    plt.ylabel('x2')
    plt.legend()
    plt.show()

if __name__ == '__main__':
    x1 = [0, 0]
    x2 = [0, 1]
    x3 = [1, 0]
    x4 = [1, 1]
    class1 = [x1, x2]
    class2 = [x3, x4]

    x1 = get_zgxl(x1, 1)
    x2 = get_zgxl(x2, 1)
    x3 = get_zgxl(x3, -1)
    x4 = get_zgxl(x4, -1)
    x_data = [x1, x2, x3, x4]
    # print(x_data)

    w1 = np.zeros((3, 1))  # 初始值w1为列向量
    #print('w1:' + str(w1) + '\n')

    update_w = w1
    update_w, wTx_list = fit_one(update_w, x1, x2, x3, x4)

    count = 0
    iter_number = 0

    for wTx in wTx_list:
        if wTx > 0:
            count += 1
        if count < 4:
            update_w, wTx_list = fit_one(update_w, x1, x2, x3, x4)
            iter_number += 1
        else:
            break

    print('迭代次数为:' + str(iter_number))
    print('迭代终止时的w:'+'\n' + str(update_w))
    #print(wTx_list)
    draw_plot(class1, class2, update_w)

到此这篇关于详解如何用Python实现感知器算法的文章就介绍到这了,更多相关Python实现感知器算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python实现神经网络感知器算法

    现在我们用python代码实现感知器算法. # -*- coding: utf-8 -*- import numpy as np class Perceptron(object): """ eta:学习率 n_iter:权重向量的训练次数 w_:神经分叉权重向量 errors_:用于记录神经元判断出错次数 """ def __init__(self, eta=0.01, n_iter=2): self.eta = eta self.n_iter

  • python实现感知器算法(批处理)

    本文实例为大家分享了Python感知器算法实现的具体代码,供大家参考,具体内容如下 先创建感知器类:用于二分类 # -*- coding: utf-8 -*- import numpy as np class Perceptron(object): """ 感知器:用于二分类 参照改写 https://blog.csdn.net/simple_the_best/article/details/54619495 属性: w0:偏差 w:权向量 learning_rate:学习率

  • 基于 Python 实践感知器分类算法

    Perceptron是用于二进制分类任务的线性机器学习算法.它可以被认为是人工神经网络的第一种和最简单的类型之一.绝对不是"深度"学习,而是重要的组成部分.与逻辑回归相似,它可以快速学习两类分类任务在特征空间中的线性分离,尽管与逻辑回归不同,它使用随机梯度下降优化算法学习并且不预测校准概率. 在本教程中,您将发现Perceptron分类机器学习算法.完成本教程后,您将知道: Perceptron分类器是一种线性算法,可以应用于二进制分类任务. 如何使用带有Scikit-Learn的Pe

  • python实现感知器算法详解

    在1943年,沃伦麦卡洛可与沃尔特皮茨提出了第一个脑神经元的抽象模型,简称麦卡洛可-皮茨神经元(McCullock-Pitts neuron)简称MCP,大脑神经元的结构如下图.麦卡洛可和皮茨将神经细胞描述为一个具备二进制输出的逻辑门.树突接收多个输入信号,当输入信号累加超过一定的值(阈值),就会产生一个输出信号.弗兰克罗森布拉特基于MCP神经元提出了第一个感知器学习算法,同时它还提出了一个自学习算法,此算法可以通过对输入信号和输出信号的学习,自动的获取到权重系数,通过输入信号与权重系数的乘积来

  • 详解如何用Python实现感知器算法

    目录 一.题目 二.数学求解过程 三.感知器算法原理及步骤 四.python代码实现及结果 一.题目 二.数学求解过程 该轮迭代分类结果全部正确,判别函数为g(x)=-2x1+1 三.感知器算法原理及步骤 四.python代码实现及结果 (1)由数学求解过程可知: (2)程序运行结果 (3)绘图结果 ''' 20210610 Julyer 感知器 ''' import numpy as np import matplotlib.pyplot as plt def get_zgxl(xn, a):

  • 详解如何用Python登录豆瓣并爬取影评

    目录 一.需求背景 二.功能描述 三.技术方案 四.登录豆瓣 1.分析豆瓣登录接口 2.代码实现登录豆瓣 3.保存会话状态 4.这个Session对象是我们常说的session吗? 五.爬取影评 1.分析豆瓣影评接口 2.爬取一条影评数据 3.影评内容提取 4.批量爬取 六.分析影评 1.使用结巴分词 七.总结 上一篇我们讲过Cookie相关的知识,了解到Cookie是为了交互式web而诞生的,它主要用于以下三个方面: 会话状态管理(如用户登录状态.购物车.游戏分数或其它需要记录的信息) 个性化

  • 详解如何用Python模拟登录淘宝

    目录 一.淘宝登录流程 二.模拟登录实现 1.判断是否需要验证码 2.验证用户名密码 3.申请st码 4.使用st码登录 5.获取淘宝昵称 三.总结 1.代码结构 2.存在问题 看了下网上有很多关于模拟登录淘宝,但是基本都是使用scrapy.pyppeteer.selenium等库来模拟登录,但是目前我们还没有讲到这些库,只讲了requests库,那我们今天就来使用requests库模拟登录淘宝! 讲模拟登录淘宝之前,我们来回顾一下之前用requests库模拟登录豆瓣和新浪微博的过程:这一类模拟

  • 详解如何用Python写个听小说的爬虫

    目录 书名和章节列表 音频地址 下载 完整代码 总结 在路上发现好多人都喜欢用耳机听小说,同事居然可以一整天的带着一只耳机听小说.小编表示非常的震惊.今天就用 Python 下载听小说 tingchina.com的音频. 书名和章节列表 随机点开一本书,这个页面可以使用 BeautifulSoup 获取书名和所有单个章节音频的列表.复制浏览器的地址,如:https://www.tingchina.com/yousheng/disp_31086.htm. from bs4 import Beaut

  • 详解如何用python实现一个简单下载器的服务端和客户端

    话不多说,先看代码: 客户端: import socket def main(): #creat: download_client=socket.socket(socket.AF_INET,socket.SOCK_STREAM) #link: serv_ip=input("please input server IP") serv_port=int(input(("please input server port"))) serv_addr=(serv_ip,ser

  • 详解如何用js实现一个网页版节拍器

    目录 引言 1. 需求分析 2. 素材准备 3. 开发实现 3.1 框架选型 3.2 模块设计 3.3 数据结构设计 3.4 播放逻辑 3.5 音频控制 3.6 动效 3.7 大屏展示 3.8 新增人声发音 4. 部署 5. 后续工作 5.1 目前存在的问题 ios声音 5.2 TODO 切换不同音效 引言 平时练尤克里里经常用到节拍器,突发奇想自己用js开发一个. 最后实现的效果如下:ahao430.github.io/metronome/. 代码见github仓库:github.com/ah

  • 详解如何创建Python元类

    什么是Python元类? Python元类是与Python的面向对象编程概念相关的高级功能之一.它确定类的行为,并进一步帮助其修改. 用Python创建的每个类都有一个基础的Metaclass.因此,在创建类时,您将间接使用元类.它隐式发生,您无需指定任何内容. 与元编程相关联的元类决定了程序对其自身进行操作的能力. 学习元类可能看起来很复杂,但是让我们先从一些类和对象的概念入手,以便于理解. Python中的类和对象 类是一个蓝图,是具有对象的逻辑实体. 一个简单的类在声明时没有分配任何内存,

  • 详解如何利用Python绘制迷宫小游戏

    目录 构思 绘制迷宫 走出迷宫 完整代码 更大的挑战 关于坐标系设置 周末在家,儿子闹着要玩游戏,让玩吧,不利于健康,不让玩吧,扛不住他折腾,于是想,不如一起搞个小游戏玩玩! 之前给他编过猜数字 和 掷骰子 游戏,现在已经没有吸引力了,就对他说:“我们来玩个迷宫游戏吧.” 果不其然,有了兴趣,于是和他一起设计实现起来,现在一起看看我们是怎么做的吧,说不定也能成为一个陪娃神器~ 先一睹为快: 构思 迷宫游戏,相对比较简单,设置好地图,然后用递归算法来寻找出口,并将过程显示出来,增强趣味性. 不如想

随机推荐