Android+OpenCv4实现边缘检测及轮廓绘制出图像最大边缘

实现步骤:

  • 图像灰度化
  • 边缘检测
  • 根据Canny检测得出来的Mat寻找轮廓
  • 算出最大轮廓周长or面积
  • 根据获取到的最大轮廓下标进行轮廓绘制
  • 画出最大矩形,并返回Rect

Canny边缘检测

基于Canny算法的边缘检测主要有5个步骤,依次是高斯滤波、像素梯度计算、非极大值像素梯度抑制、滞后阈值处理和孤立弱边缘抑制。Canny在有噪声的情况下表现好不好,取决于前面的降噪过程,可以手动做高斯处理提高识别率。

/**
		image  输入图像,必须是CV_8U的单通道或者三通道图像。
		edges  输出图像,与输入图像具有相同尺寸的单通道图像,且数据类型为CV_8U。
		threshold1  第一个滞后阈值。
		threshold2  第二个滞后阈值。
		apertureSize  Sobel算子的直径。
		L2gradient  计算图像梯度幅值方法的标志。默认为false
**/
public static void Canny(Mat image, Mat edges, double threshold1, double threshold2, int apertureSize, boolean L2gradient)

使用

    /**
     * canny算法,边缘检测

     */
    public static Mat canny(Bitmap bitmap) {
        Mat mSource = new Mat();

        Utils.bitmapToMat(bitmap, mSource);
        Mat grayMat = new Mat();
        Imgproc.cvtColor(mSource,grayMat,Imgproc.COLOR_BGR2GRAY);//转换成灰度图
        Mat mat = mSource.clone();
        Imgproc.Canny(mSource, mat, 75, 200);
        return mat;
    }

获取图像最大矩形

   /**
     * 返回边缘检测之后的最大矩形,并返回
     *
     * @param cannyMat
     *            Canny之后的mat矩阵
     * @return
     */
    public  Rect findMaxRect(Mat cannyMat) {
        Mat tmp = mSource.clone();
        List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
        Mat hierarchy = new Mat();
        // 寻找轮廓
        Imgproc.findContours(cannyMat, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
        int index = 0;
        double perimeter = 0;
        // 找出匹配到的最大轮廓
        for (int i = 0; i < contours.size(); i++) {
            // 最大面积
//            double area = Imgproc.contourArea(contours.get(i));
            //最大周长
            MatOfPoint2f source = new MatOfPoint2f();
            source.fromList(contours.get(i).toList());
            double length = Imgproc.arcLength(source,true);
            if(length>perimeter){
                perimeter =  length;
                index = i;
            }
        }

        /**
         * 参数一:image,待绘制轮廓的图像。
         *
         * 参数二:contours,待绘制的轮廓集合。
         *
         * 参数三:contourIdx,要绘制的轮廓在contours中的索引,若为负数,表示绘制全部轮廓。
         *
         * 参数四:color,绘制轮廓的颜色。
         *
         * 参数五:thickness,绘制轮廓的线条粗细。若为负数,那么绘制轮廓的内部。
         *
         * 参数六:lineType,线条类型。FILLED   LINE_4   4连通   LINE_8   8连通  LINE_AA  抗锯齿
         */
        Imgproc.drawContours(
                tmp,
                contours,
                index,
                new Scalar(0.0, 0.0, 255.0),
                9,
                Imgproc.LINE_AA

        );

        Rect rect = Imgproc.boundingRect(contours.get(index));
//        Imgproc.rectangle(tmp, rect, new Scalar(0.0, 0.0, 255.0), 4, Imgproc.LINE_8);
        showImg(tmp);

        return rect;
    }

  /**
     * 显示图像
     * @param mat
     */
    private void showImg(Mat mat){

        Bitmap bitmap = Bitmap.createBitmap(mat.width(), mat.height(), Bitmap.Config.ARGB_8888);
        Utils.matToBitmap(mat, bitmap);
        mIvSrc.setImageBitmap(bitmap);
        mat.release();
    }

最终效果图

获得矩形坐标点以后,后期可以做裁剪,旋转之类操作,可以自行研究。

到此这篇关于Android+OpenCv4实现边缘检测及轮廓绘制出图像最大边缘的文章就介绍到这了,更多相关Android OpenCv4边缘检测内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 如何在Android上使用opencv

    1.下载OpenCV的Android包并解压缩(https://opencv.org/releases/) 2.创建Android应用或者在现有应用中,导入OpenCV模块 导入目录时选择Opencv Android中的sdk / java目录 3.修改导入的Opencv模块的build.gradle,使compileSdkVersion.buildToolsVersion.minSdkVersion.targetSdkVersion与app的build.gradle中的一致. 4.修改导入Op

  • OpenCV在Android上的应用示例

    一. OpenCV 介绍 OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows.Android和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法. 在移动端上使用 OpenCV 可以完成一系列图像处理的工作. 二. OpenCV 在 Android 上的配置 我在项目中使用的 OpenCV 版本是 4.x.

  • Android 通过cmake的方式接入opencv的方法步骤

    简述 上篇 我们通过Java sdk的方式已经将opencv接入到项目中了,如果想使用opencv sdk 提供的 C++ 头文件与 .so动态库,自己封装jni这样使用上篇的方式显然是不能实现的.所以本篇我们介绍通过cmake的方式接入opencv. 接入步骤 1.新建jni项目 具体创建过程参考上篇:通过Java sdk方式接入opencv. 2.导入so库 在项目app/src/main目录下新建jniLibs,并将解压后的opencv sdk 目录下对应的路径 sdk/native/li

  • Android+OpenCV4.2.0环境配置详解(Android studio)

    仅是个人记录,希望能对有需要的给予一些小小的帮助 首先我们肯定是要去到OpenCV的官网下载对应的SDK,并解压得到文件夹(opencv-4.2.0-android-sdk) 其次是NDK环境搭建(双击shift,输入sdk,找到sdk manager,将下面红色框框勾选安装) 创建项目,我选用的是(并不是只有这一选择) 导入Module File->New->Import Module 路径选择**\opencv-4.2.0-android-sdk\OpenCV-android-sdk\sd

  • Android Studio4.0导入OpenCv4.3.0的方法步骤

    1.准备环境 Android Studio4.0:官网下载:https://developer.android.google.cn/studio/ (Android Studio安装之前首先需要确认电脑上是否安装好JAVA环境,具体安装可以参考其他大佬,本文不作为重点) OpenCv4.3.0:官网下载:https://opencv.org/ 百度网盘:链接: https://pan.baidu.com/s/1aC2E_LT8yFkyAKgZhcNPbg 提取码: 7bk1 2.新建工程 双击打

  • Android OpenCv4 绘制多边形的方法

    集成非常简单,直接按Module形式导入 sdk 即可 官方地址,打开选择Android 下载完成解压以后直接导入OpenCV-android-sdk目录下的sdk文件即可. 绘制矩形 方法 /** img 输入图像 pt1 左上起点 pt2 右下终点 color 绘制直线的颜色 thickness 直线宽度.若为负值,表示填充 lineType 边界的类型,可取值为FILLED ,LINE_4 ,LINE_8 和LINE_AA shift 点坐标中的小数位数 **/ public static

  • android端使用openCV实现车牌检测

    现在,汽车的踪影无处不在,公路上疾驰,大街边临停,小区中停靠,车库里停泊.管理监控如此庞大数量的汽车是个头疼的问题.精明的人们把目光放在车牌上,因为车牌是汽车的"身份证".所以车牌识别成为了焦点,而车牌检测是车牌识别的基础和前提.本篇文章,主要讨论使用openCV实现车牌检测. openCV是开源计算机视觉库,基于计算机视觉与机器学习,提供强大的图像处理能力.我们可以快速集成openCV库到android端,其中一种方式是直接安装openCV Manager,按需使用:启动服务去动态加

  • Android 中使用 dlib+opencv 实现动态人脸检测功能

    1 概述 完成 Android 相机预览功能以后,在此基础上我使用 dlib 与 opencv 库做了一个关于人脸检测的 demo.该 demo 在相机预览过程中对人脸进行实时检测,并将检测到的人脸用矩形框描绘出来.具体实现原理如下: 采用双层 View,底层的 TextureView 用于预览,程序从 TextureView 中获取预览帧数据,然后调用 dlib 库对帧数据进行处理,最后将检测结果绘制在顶层的 SurfaceView 中. 2 项目配置 由于项目中用到了 dlib 与 open

  • 利用OPENCV为android开发畸变校正的JNI库方法

    需要为项目提供一套畸变校正的算法,由于需要大量的矩阵运算,考虑到效率和适时性,使用JNI开发,希望把有关数组短阵的处理的变换全部放入C语言中处理. 主要用于android移动端,大致的数据来源一是从camera直接读取YUV数据,一种是从第三方接读取RGB数据,另一种是直接对BITMAP进行处理. 1.考虑到硬件设备接口,第三方软件接口,图像接口,OPENCV接口,希望能够开发出通用的算法库,一劳永逸的解决各种复杂的使用场景,因此数据要支持YUV,支持ARGB,支持MAT 2android对BI

  • 使用Android Studio创建OpenCV4.1.0 项目的步骤

    一.OpenCV  OpenCV(开源计算机视觉库)是一个开源的计算机视觉和机器学习软件库,是一个基于C与C++的跨平台计算机视觉处理库. 二.下载 开发基于Andorid的计算机视觉的应用可以使用OpenCV 4.1.0-Android SDK: 从官方网站下载 OpenCV 4.1.0 For Android SDK https://sourceforge.net/projects/opencvlibrary/files/4.1.0/opencv-4.1.0-android-sdk.zip/

  • Android基于OpenCV实现图像修复

    目录 API 操作 图像修复 实际应用中,图像常常容易受损,如存在污渍的镜头.旧照片的划痕.人为的涂画(比如马赛克),亦或是图像本身的损坏.将受到损坏的图像尽可能还原成原来的模样的技术,称之为图像修复.所谓修复,就代表图像大部分内容是完好的,所以,图像修复的原理,就是用完好的部分去推断受损部分的信息,特别是完好部分与受损部分的交界处,即受损区域的边缘,在这个推断过程中尤为重要. OpenCV给我们提供了inpaint方法来实现这个功能,并提供了两种图像修复的算法: 基于Navier-Stokes

  • Android通过Java sdk的方式接入OpenCv的方法

    简述 公司最近要做运动检测和眼球追踪,鉴于资费等因素,最后考虑使用OpenCv的相关Api来来满足业务需求.在使用过程中发现OpenCv的v4.2.0和v4.1.2接入后均存在一些bug,所以最后选择了v4.1.0版本. 接入步骤 一.下载OpenCV Sdk 前往OpenCv官网下载对应的Android v4.1.0版本的sdk. 二.Android Studio 集成OpenCV Sdk 1.Android Studio 下载cmake和ndk 2.Android Studio 新建ndk项

随机推荐