Python numpy和matlab的几点差异介绍

目录
  • numpy和matlab的几点差异
    • 1、Numpy数组索引指定开始和结束时
    • 2、Numpy.ndarray切片的修改会引起原矩阵的修改
    • 3、numpy使用切片索引(例如1:2)不会产生降维
    • 4、不同于matlab
    • 5、不同matlab对于矩阵预算要求大小一致
  • python与matlab的优缺点
    • 1、python的优势
    • 2、matlab的优势
    • 3、两者的区别
    • 4、怎样选择

numpy和matlab的几点差异

Python numpy和matlab都是便捷灵活的科学计算语言,两者具有很多相似之处,但也有一些混淆的地方,这里假定你熟悉matlab,但不了解numpy,记录几个numpy实例:

1、Numpy数组索引指定开始和结束时

不包括结束,也即下面的b和c是一样的。

a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
b = a[:2, 1:2]
c = a[:2, 1]

2、Numpy.ndarray切片的修改会引起原矩阵的修改

这与matlab不同。

a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
b = a[:2, 1:3]
# [[2 3]
#  [6 7]]
print(a[0, 1])   # Prints "2"
b[0, 0] = 77     # b[0, 0] is the same piece of data as a[0, 1]
print(a[0, 1])   # Prints "77"

3、numpy使用切片索引(例如1:2)不会产生降维

而使用整数索引(例如1)会产生降维。

import numpy as np
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
row_r1 = a[1, :]    # Rank 1 view of the second row of a
row_r2 = a[1:2, :]  # Rank 2 view of the second row of a
print(row_r1, row_r1.shape)  # Prints "[5 6 7 8] (4,)"
print(row_r2, row_r2.shape)  # Prints "[[5 6 7 8]] (1, 4)"
col_r1 = a[:, 1]
col_r2 = a[:, 1:2]
print(col_r1, col_r1.shape)  # Prints "[ 2  6 10] (3,)"
print(col_r2, col_r2.shape)  # Prints "[[ 2]
                             #          [ 6]
                             #          [10]] (3, 1)"

4、不同于matlab

numpy的转置对于1维数组的操作不发生变化。

v = np.array([1,2,3])
print(v)    # Prints "[1 2 3]"
print(v.T)  # Prints "[1 2 3]"

5、不同matlab对于矩阵预算要求大小一致

Numpy broadcasting直接支持操作(加减乘除等),要求前一个矩阵的最后一维度大小和待操作矩阵的大小相同。

x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = x + v  # Add v to each row of x using broadcasting
print(y)  # Prints "[[ 2  2  4]
          #          [ 5  5  7]
          #          [ 8  8 10]

python与matlab的优缺点

如果要问我选哪个,我会建议两个都选。很多人喜欢拿python和matlab对比,然后得出哪个更好的结论。其实吧,够用就好。

如果是学生,或者研究人员,比如研究信号处理,那么用matlab比较好,有大量现成工具箱和前人的成果可以借鉴。如果是产品化项目,那么python比较好,可以做web后台,可以打包成应用程序,效率相对matlab也要高那么一点点。如果是信号、数据方面的工程人员,建议还是两个都掌握吧,也不复杂,都是脚本式的语言,比C++什么的易学多了。

下面从两者各自的应用做个对比。

1、python的优势

Python相对于Matlab最大的优势:免费。国内可能不是很在乎这个,但在国外是个很关键的问题。

Python次大的优势:开源。你可以大量更改科学计算的算法细节。

可移植性,Matlab必然不如Python。但你主要做Research,这方面需求应当不高。

第三方生态,Matlab不如Python。比如3D的绘图工具包,比如GUI,比如更方便的并行,使用GPU,Functional等等。长期来看,Python的科学计算生态会比Matlab好。

语言更加优美。另外如果有一定的OOP需求,构建较大一点的科学计算系统,直接用Python比用Matlab混合的方案肯定要简洁不少。

python作为一种通用编程语言,可以做做Web,搞个爬虫,编个脚本,写个小工具用途很广泛。

2、matlab的优势

学术界大量使用matlab做仿真,做研究的话容易找到代码参考;

语法相对python更灵活一些,matlab写程序基本不用套路,所谓老夫撸matlab就一个字,干;

有simulink。有人说simulink没什么用,其实还是挺有用的,比如通信建模,另外simulink可以生产DSP或者FPGA代码,有的时候很有用。

3、两者的区别

python是一种通用语言,而matlab更像是一个平台。

4、怎样选择

如果做研究,可以matlab为主;如果做产品,可以python为主。当然也有matlab做成产品的,打包成exe什么的都不是事。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 关于Python下的Matlab函数对应关系(Numpy)

    目录 Matlab函数对应关系(Numpy) Numpy与Matlab互转操作 1.常用操作(参考numpy官方说明) 2.线性变换(参考numpy官方说明) Matlab函数对应关系(Numpy) 首先给出官网链接,其中详细说明了在Python下如何用Numpy实现Matlab下相同的函数功能. 博主在用Python撰写代码的时候,想用Python实现在Matlab下某个函数的功能(比如Repmat函数),但是当使用语句 from numpy.matlib import repmat A =

  • 详解python和matlab的优势与区别

    Python是一种面向对象的解释型计算机程序设计语言.Python是纯粹的自由软件, 源代码和解释器CPython遵循 GPL(GNU General Public License)协议 .Python语法简洁清晰,特色之一是强制用空白符(white space)作为语句缩进. Python的优势: Python相对于Matlab最大的优势:免费.但既然你已经能用上Matlab,想必不在乎这个了. Python次大的优势:开源.你可以大量更改科学计算的算法细节. 可移植性,Matlab必然不如P

  • windows下python 3.9 Numpy scipy和matlabplot的安装教程详解

    学习python过程中想使用python的matlabplot绘图功能,遇到了一大批问题,然后一路过关斩将,最终安装成功,实为不易,发帖留念. 1 首先打开cmd win+r 2 pip安装 pip3 install --user numpy scipy matplotlib –user 选项可以设置只安装在当前的用户下,而不是写入到系统目录.默认情况使用国外线路,国外太慢,我们使用清华的镜像就可以: pip3 install numpy scipy matplotlib -i https://

  • 实例详解Matlab 与 Python 的区别

    一.Python简介 Python是一种面向对象的解释型计算机程序设计语言.Python是纯粹的自由软件, 源代码和解释器CPython遵循 GPL(GNU General Public License)协议[2] .Python语法简洁清晰,特色之一是强制用空白符(white space)作为语句缩进. Python执行: Python在执行时,首先会将.py文件中的源代码编译成Python的byte code(字节码),然后再由Python Virtual Machine(Python虚拟机

  • Python numpy和matlab的几点差异介绍

    目录 numpy和matlab的几点差异 1.Numpy数组索引指定开始和结束时 2.Numpy.ndarray切片的修改会引起原矩阵的修改 3.numpy使用切片索引(例如1:2)不会产生降维 4.不同于matlab 5.不同matlab对于矩阵预算要求大小一致 python与matlab的优缺点 1.python的优势 2.matlab的优势 3.两者的区别 4.怎样选择 numpy和matlab的几点差异 Python numpy和matlab都是便捷灵活的科学计算语言,两者具有很多相似之

  • Python numpy视图与副本

    目录 1. 简单讲解 2. 视图 视图概念 视图应用 视图优点 3. 副本 副本概念 副本应用 前言: 继上一篇对numpy 模块之ndarray一文中对 ndarray 内存结构主要分为两部分: metdata :存放数组类型dtype.数组维度ndim.维度数量shape.维间距strides等raw bata:存放原始数据data 在 metdata 中包含着关于数组相关信息,可以帮助我们在数组ndarray中快速索引和解释指定的数据 除此了对数组进行索引操作外,也会对数组的原数据进行类似

  • Python numpy生成矩阵基础用法实例代码

    目录 1.numpy.array() 可以把列表转换为矩阵 2.numpy.arange() 生成一个向量 3.numpy.ones() 生成一个全是1的矩阵, 里面填入矩阵范围 4.numpy.zeros() 生成一个全是0的矩阵, 里面填入矩阵范围 5.numpy.eye()  可填入两个参数分别代表行和列,也可只填一个参数,即为方阵 6.numpy.empty() 返回一个没有经过初始化的一个矩阵 7.numpy.linspace  返回在指定的范围内确定个数的等间距的一组数的向量 补充:

  • Python numpy 提取矩阵的某一行或某一列的实例

    如下所示: import numpy as np a=np.arange(9).reshape(3,3) a Out[31]: array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) 矩阵的某一行 a[1] Out[32]: array([3, 4, 5]) 矩阵的某一列 a[:,1] Out[33]: array([1, 4, 7]) b=np.eye(3,3) b Out[36]: array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0.,

  • 基于Python Numpy的数组array和矩阵matrix详解

    NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵

  • Python numpy中矩阵的基本用法汇总

    Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的matrix与MATLAB中matrices等价. 直接看一个例子: import numpy as np a = np.mat('1 3;5 7')

  • python numpy元素的区间查找方法

    找了半天,以为numpy的where函数像matlab 的find函数一样好用,能够返回一个区间内的元素索引位置.结果没有..(也可能是我没找到) 故自己写一个函数,找多维数组下的,在某个开区间的元素位置 import numpy as np def find(arr,min,max): pos_min = arr>min pos_max = arr<max pos_rst = pos_min & pos_max return np.where(pos_rst == True)#whe

  • 在python Numpy中求向量和矩阵的范数实例

    np.linalg.norm(求范数):linalg=linear(线性)+algebra(代数),norm则表示范数. 函数参数 x_norm=np.linalg.norm(x, ord=None, axis=None, keepdims=False) ①x: 表示矩阵(也可以是一维) ②ord:范数类型 向量的范数: 矩阵的范数: ord=1:列和的最大值 ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根 ord=∞:行和的最大值 ③axis:处理类型 axis=1表

  • python+numpy实现的基本矩阵操作示例

    本文实例讲述了python+numpy实现的基本矩阵操作.分享给大家供大家参考,具体如下: #! usr/bin/env python # coding: utf-8 # 学习numpy中矩阵的代码笔记 # 2018年05月29日15:43:40 # 参考网站:http://cs231n.github.io/python-numpy-tutorial/ import numpy as np #==================矩阵的创建,增删查改,索引,运算==================

随机推荐