OpenCV 直方图均衡化的实现原理解析

目录
  • 直方图均衡化介绍
    • 图像的直方图是什么?
      • 更形象解释
    • 什么是直方图均衡化?
    • 直方图均衡化是如何实现的?
    • 直方图均衡化的作用
  • 直方图均衡化步骤
  • 相关API
    • equalizeHist
  • 代码示例
    • 灰度图均值化
    • 彩色图均值化

直方图均衡化介绍

图像的直方图是什么?

图像直方图,是指对整个图像像在灰度范围内的像素值(0~255)统计出现频率次数,据此生成的直方图,称为图像直方图-直方图。直方图反映了图像灰度的分布情况。是图像的统计学特征。

简单来说:直方图是图像中像素强度分布的图形表达方式,它统计了每一个强度值所具有的像素个数。

例如下面这张图片,左图为灰度图,右图统计了这张图的所有像素值(0~255)对应的像素个数

更形象解释

更形象的来说,将下面像素格子对等为如上图的图像

假设有该图像数据8x8,像素值范围0~14共15个灰度等级,统计得到各个等级出现次数及直方图如下图所示:

则对上面抽象出来的图像(像素格子)进行像素与出现次数的统计得到下图左侧的表格,做出频率图如右图所示:

什么是直方图均衡化?

是一种提高图像对比度的方法,拉伸图像灰度值范围。

简单来说, 以上面狗狗的的直方图为例, 你可以看到像素主要集中在中间的一些强度值上。直方图均衡化要做的就是 拉伸 这个范围。就是下面蓝框框出来的范围就是像素主要几种区间。

见下图:绿圈 圈出了 像素分布率较低像素值,对其应用均衡化后(将中间蓝框像素分布较高的区间拉伸), 得到了中间图所示的直方图。均衡化的图像见下面右图.

直方图均衡化是如何实现的?

通过remap我们知道可以将图像灰度分布从一个分布映射到另外一个分布,然后在得到映射后的像素值即可。

映射关系如下:

其中源直方图 H(i), 累积分布 H’(i)函数,equalized()为重映射后的图像

直方图均衡化的作用

因为直方图均衡化处理之后,原来比较少像素的灰度会被分配到别的灰度去,像素相对集中, 处理后灰度范围变大,对比度变大,清晰度变大,所以能有效增强图像。

直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法,亮度可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。

总的来说,直方图均衡化是用来增强对比度的

直方图均衡化步骤

  1. 加载源图像
  2. 转为灰度图
  3. EqualizeHist 对直方图均衡化
  4. 显示均衡化后图像.

相关API

equalizeHist

cv::equalizeHist(
	InputArray src,	// 输入图像,必须是8-bit的单通道图像
	OutputArray dst	// 输出结果
)

代码示例

灰度图均值化

#include <iostream>
#include <math.h>
#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/highgui/highgui_c.h> 

using namespace cv;
int main(int argc, char** argv)
{
	Mat src, dst;
	src = imread("./test2.jpg");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}
	cvtColor(src, src, CV_BGR2GRAY);
	equalizeHist(src, dst);
	char INPUT_T[] = "input image";
	char OUTPUT_T[] = "result image";
	namedWindow(INPUT_T, CV_WINDOW_AUTOSIZE);
	namedWindow(OUTPUT_T, CV_WINDOW_AUTOSIZE);
	imshow(INPUT_T, src);
	imshow(OUTPUT_T, dst);
	waitKey(0);
	return 0;
}

彩色图均值化

#include <iostream>
#include <math.h>
#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/highgui/highgui_c.h> 

using namespace cv;
using namespace std;
int main(int argc, char*argv)
{
	Mat src, dst, dst1;
	src = imread("./test2.jpg");
	if (!src.data)
	{
		printf("could not load image...\n");
		return -1;
	}
	char input[] = "input image";
	char output[] = "histogram iamge";
	namedWindow(input, CV_WINDOW_AUTOSIZE);
	namedWindow(output, CV_WINDOW_AUTOSIZE);
	imshow(input, src);
	// 分割通道
	vector<Mat>channels;
	split(src, channels);
	Mat blue, green, red;
	blue = channels.at(0);
	green = channels.at(1);
	red = channels.at(2);
	// 分别对BGR通道做直方图均衡化
	equalizeHist(blue, blue);
	equalizeHist(green, green);
	equalizeHist(red, red);
	// 合并通道
	merge(channels, dst);
	imshow(output, dst);
	waitKey(0);
	return 0;
}

到此这篇关于OpenCV 直方图均衡化的文章就介绍到这了,更多相关OpenCV 直方图均衡化内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python OpenCV直方图均衡化详解

    目录 前言 灰度直方图均衡化 颜色直方图均衡化 前言 图像处理技术是计算机视觉项目的核心,通常是计算机视觉项目中的关键工具,可以使用它们来完成各种计算机视觉任务.在本文中,将介绍如何使用 OpenCV 函数 cv2.equalizeHist() 执行直方图均衡,并将其应用于灰度和彩色图像,cv2.equalizeHist() 函数将亮度归一化并提高图像的对比度. 灰度直方图均衡化 使用 cv2.equalizeHist() 函数来均衡给定灰度图像的对比度: # 加载图像并转换为灰度图像 imag

  • 详解python OpenCV学习笔记之直方图均衡化

    本文介绍了python OpenCV学习笔记之直方图均衡化,分享给大家,具体如下: 官方文档 – https://docs.opencv.org/3.4.0/d5/daf/tutorial_py_histogram_equalization.html 考虑一个图像,其像素值仅限制在特定的值范围内.例如,更明亮的图像将使所有像素都限制在高值中.但是一个好的图像会有来自图像的所有区域的像素.所以你需要把这个直方图拉伸到两端(如下图所给出的),这就是直方图均衡的作用(用简单的话说).这通常会改善图像的

  • OpenCV利用python来实现图像的直方图均衡化

    1.直方图 直方图: (1) 图像中不同像素等级出现的次数 (2) 图像中具有不同等级的像素关于总像素数目的比值. 我们使用cv2.calcHist方法得到直方图 cv2.calcHist(images, channels, mask, histSize, ranges): -img: 图像 -channels: 选取图像的哪个通道 -histSize: 直方图大小 -ranges: 直方图范围 cv2.minMaxLoc: 返回直方图的最大最小值,以及他们的索引 import cv2 impo

  • OpenCV-Python直方图均衡化实现图像去雾

    直方图均衡化 直方图均衡化的目的是将原始图像的灰度级均匀地映射到整个灰度级范围内,得到一个灰度级分布均衡的图像.这种均衡化,即实现了灰度值统计上的概率均衡,也实现了人类视觉系统上(HSV)的视觉均衡. 一般来说,直方图均衡化可以达到增强图像显示效果的目的.最常用的比如去雾.下面,我们来分别实现灰度图像去雾以及彩色图像去雾. 实现灰度图像去雾 在OpenCV中,它提供了函数cv2.equalizeHist()来实现直方图均衡化,该函数的完整定义如下: def equalizeHist(src, d

  • OpenCV 直方图均衡化的实现原理解析

    目录 直方图均衡化介绍 图像的直方图是什么? 更形象解释 什么是直方图均衡化? 直方图均衡化是如何实现的? 直方图均衡化的作用 直方图均衡化步骤 相关API equalizeHist 代码示例 灰度图均值化 彩色图均值化 直方图均衡化介绍 图像的直方图是什么? 图像直方图,是指对整个图像像在灰度范围内的像素值(0~255)统计出现频率次数,据此生成的直方图,称为图像直方图-直方图.直方图反映了图像灰度的分布情况.是图像的统计学特征. 简单来说:直方图是图像中像素强度分布的图形表达方式,它统计了每

  • Python学习之直方图均衡化原理详解

    目录 1.点算子 2.线性灰度变换 3.直方图均衡化 4.代码实战 1.点算子 点算子是两个像素灰度值间的映射关系,属于像素的逐点运算,相邻像素不参与运算.点算子是最简单的图像处理手段,如:亮度调整.对比度调整.颜色变换.直方图均衡化等等. 2.线性灰度变换 线性灰度变换表达为: 其中rk.sk分别为输入.输出点像素灰度值. ▲图2.1 线性灰度变换 当a>1时,输出图像像素灰度范围扩大,图像对比度增强,当a<1时反之.这是因为人眼不易区分相近的灰度值,因此若图像灰度值范围较小,观感上细节不够

  • python通过opencv实现图片裁剪原理解析

    这篇文章主要介绍了python通过opencv实现图片裁剪原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 图像裁剪的基本概念 : 图像裁剪是指将图像中我们想要的研究区以外的区域去除,经常是按照行政区划或研究区域的边界对图像进行裁剪.例如,一张500×400的图像,我们只想要中间的250×200的区域,就可以使用图像裁剪将四周的区域去除. 在实际开发工作中,我们经常需要对图像进行分幅裁剪,按照ERDAS实际图像分幅裁剪的过程,可以将图像分

  • 详解OpenCV自适应直方图均衡化的应用

    目录 介绍 主要代码 比较 CLAHE 和直方图均衡化 介绍 在<直方图均衡化详解>中,我们已经了解的直方图均衡化的基本概念,并且可以使用 cv2.equalizeHist() 函数执行直方图均衡. 在本节中,将介绍如何应用对比度受限的自适应直方图均衡化 ( Contrast Limited Adaptive Histogram Equalization, CLAHE ) 来均衡图像,CLAHE 是自适应直方图均衡化( Adaptive Histogram Equalization, AHE

  • python opencv 直方图反向投影的方法

    本文介绍了python opencv 直方图反向投影的方法,分享给大家,具体如下: 目标: 直方图反向投影 原理: 反向投影可以用来做图像分割,寻找感兴趣区间.它会输出与输入图像大小相同的图像,每一个像素值代表了输入图像上对应点属于目标对象的概率,简言之,输出图像中像素值越高的点越可能代表想要查找的目标.直方图投影经常与camshift(追踪算法)算法一起使用. 算法实现的方法,首先要为包含我们感兴趣区域的图像建立直方图(样例要找一片草坪,其他的不要).被查找的对象最好是占据整个图像(图像里全是

  • python中opencv 直方图处理

    目录 直方图处理 直方图的含义 绘制直方图 使用Numpy绘制直方图 使用OpenCV绘制直方图 使用掩模绘制直方图 直方图均衡化 直方图均衡化原理 直方图均衡化处理 pyplot 模块介绍 subplot 函数 imshow函数 直方图处理 直方图从图像内部灰度级的角度对图像进行表述从直方图的角度对图像进行处理,可以达到增强图像显示效果的目的. 直方图的含义 直方图是图像内灰度值的统计特性与图像灰度值之间的函数,直方图统计图像内各个灰度级出现的次数.从直方图的图形上观察,横坐标是图像中各像素点

  • Python OpenCV 直方图的计算与显示的方法示例

    本篇文章介绍如何用OpenCV Python来计算直方图,并简略介绍用NumPy和Matplotlib计算和绘制直方图 直方图的背景知识.用途什么的就直接略过去了.这里直接介绍方法. 计算并显示直方图 与C++中一样,在Python中调用的OpenCV直方图计算函数为cv2.calcHist. cv2.calcHist的原型为: cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate ]]) #返回his

随机推荐