详解Docker 容器跨主机多网段通信解决方案

一、MacVlan

实现Docker的跨主机网络通信的方案有很多,如之前博文中写到的通过部署 Consul服务实现Docker容器跨主机通信

Macvlan工作原理:

Macvlan是Linux内核支持的网络接口。要求的Linux内部版本是v3.9–3.19和4.0+;
通过为物理网卡创建Macvlan子接口,允许一块物理网卡拥有多个独立的MAC地址和IP地址。虚拟出来的子接口将直接暴露在相邻物理网络中。从外部看来,就像是把网线隔开多股,分别接受了不同的主机上一样;
物理网卡收到包后,会根据收到包的目的MAC地址判断这个包需要交给其中虚拟网卡。

当容器需要直连入物理网络时,可以使用Macvlan。Macvlan本身不创建网络,本质上首先使宿主机物理网卡工作在‘混杂模式',这样物理网卡的MAC地址将会失效,所有二层网络中的流量物理网卡都能收到。接下来就是在这张物理网卡上创建虚拟网卡,并为虚拟网卡指定MAC地址,实现一卡多用,在物理网络看来,每张虚拟网卡都是一个单独的接口。

使用Macvlan注意:

  • 容器直接连接物理网络,由物理网络负责分配IP地址,可能的结果是物理网络IP地址被耗尽,另一个后果是网络性能问题,物理网络中接入的主机变多,广播包占比快速升高而引起的网络性能下降问题;
  • 宿主机上的某张网上需要工作在‘混乱模式'下;
  • 前面说到,工作在混乱模式下的物理网卡,其MAC地址会失效,所以,此模式中运行的容器并不能与外网进行通信,但是不会影响宿主机与外网通信;
  • 从长远来看bridge网络与overlay网络是更好的选择,原因就是虚拟网络应该与物理网络隔离而不是共享。

工作示意图:

二、配置实例

实例1(实现容器基于macvlan的单网段跨主机通信)

实现效果:

两台centos 7.3,分别运行着docker服务;
两台docker服务器创建相同的一个MacVlan网络,使docker服务器上的容器可以实现跨主机通信。

开始配置

1、第一台docker服务器配置如下

[root@docker01 ~]# ip link set ens33 promisc on       # 开启ens33网卡的混杂模式
[root@docker01 ~]# ip link show ens33   # 确定查看的信息包含以下标红的字样
2: ens33: <BROADCAST,MULTICAST,'PROMISC',UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
  link/ether 00:0c:29:9f:33:9f brd ff:ff:ff:ff:ff:ff
[root@docker01 ~]# docker network create -d macvlan --subnet 172.22.16.0/24 --gateway 172.22.16.1 -o pa
rent=ens33 mac_net1
#创建macvlan网络,指定网关、网段等信息,“-o”指定绑定在哪张网卡之上
[root@docker01 ~]# docker run -itd --name test1 --ip 172.22.16.10 --network mac_net1 busybox   # 基于新创建的macvlan网络运行一个容器,并指定其IP

确认运行的容器的IP地址

[root@docker01 ~]# docker exec test1 ip a   # 查看IP,确定以下标红与配置的一样
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1000
  link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
  inet 127.0.0.1/8 scope host lo
    valid_lft forever preferred_lft forever
6: eth0@if2: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue
  link/ether 02:42:ac:16:10:0a brd ff:ff:ff:ff:ff:ff
  inet '172.22.16.10/24' brd 172.22.16.255 scope global eth0
    valid_lft forever preferred_lft forever

2、第二台docker服务器配置如下(与第一台docker服务器基本相似)

[root@docker02 ~]# ip link set ens33 promisc on    # 开启混杂模式
[root@docker02 ~]# ip link show ens33
2: ens33: <BROADCAST,MULTICAST,'PROMISC',UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
  link/ether 00:0c:29:b5:bc:ed brd ff:ff:ff:ff:ff:ff
[root@docker02 ~]# docker network create -d macvlan --subnet 172.22.16.0/24 --gateway=172.22.16.1 -o parent=ens33 mac_net1
#创建一个与第一台docker服务器的网段、网关相同的macvlan。并绑定到物理网卡上。
#为了可以直观的看出其他docker服务器上的macvlan和第这台是在同一个网段的。所以,建议设置的网络名称一样。
[root@docker02 ~]# docker run -itd --name test2 --ip 172.22.16.11 --network mac_net1 busybox
#运行一个容器,并指定是基于macvlan网络的
#注意,其IP地址不要与其他docker服务器上的容器IP地址冲突

确认运行的容器的IP地址

[root@docker02 ~]# docker exec test2 ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1000
  link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
  inet 127.0.0.1/8 scope host lo
    valid_lft forever preferred_lft forever
6: eth0@if2: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue
  link/ether 02:42:ac:16:10:0b brd ff:ff:ff:ff:ff:ff
  inet '172.22.16.11/24' brd 172.22.16.255 scope global eth0
    valid_lft forever preferred_lft forever

使用第二台docker服务器上的容器test2对第一台docker服务器上的容器test1进行ping测试

OK,跨主机的容器通信就通过macvlan实现了。由于使用混杂模式会造成物理网卡的MAC地址失效,所以容器并不能通过此模式进行与外网的通信。

实例2(基于macvlan的跨主机网络多网段的解决方案)

实现的效果如下:

  • 两台centos 7.3,分别运行着docker服务;
  • 每台宿主机创建了两个MacVlan网段供容器使用(172.10.16.0/24和172.20.16.0/24);
  • 第一台docker服务器上运行容器test1和test2,第二台docker服务器运行容器test3和test4。
  • 最终实现跨主机的同网段容器互相通信。

开始配置:

1、第一台docker服务器配置如下

[root@docker01 ~]# ip link set ens33 promisc on       # 开启ens33网卡的混杂模式
#也就是开启网卡的多个虚拟interface(接口)
[root@docker01 ~]# ip link show ens33   # 确定查看的信息包含以下标红的字样
2: ens33: <BROADCAST,MULTICAST,'PROMISC',UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
  link/ether 00:0c:29:9f:33:9f brd ff:ff:ff:ff:ff:ff
[root@docker01 ~]# modinfo 8021q
 #查看是否加载8021q模块,如果有信息返回,则表示该模块已经加载

modinfo 8021q命令返回的信息如下

[root@docker01 ~]# modprobe 8021q   #若没有加载8021q模块,则执行此命令
[root@docker01 ~]# cd /etc/sysconfig/network-scripts/
[root@docker01 network-scripts]# vim ifcfg-ens33
           ...................
BOOTPROTO=manual       # 将此配置项改为“manual”,也是手动的意思
[root@docker01 network-scripts]# cp -p ifcfg-ens33 ifcfg-ens33.10       # 复制一份网卡配置文件,-p保留原本文件的属性
[root@docker01 network-scripts]# vim ifcfg-ens33.10
BOOTPROTO=none
NAME=ens33.10        #注意更改名称
DEVICE=ens33.10   #注意更改名称
ONBOOT=yes
IPADDR=192.168.10.11       # 给虚拟网卡设置一个IP
PREFIX=24
GATEWAY=192.168.10.2
VLAN=yes
[root@docker01 network-scripts]# cp ifcfg-ens33.10 ifcfg-ens33.20
[root@docker01 network-scripts]# vim ifcfg-ens33.20
BOOTPROTO=none
NAME=ens33.20
DEVICE=ens33.20
ONBOOT=yes
IPADDR=192.168.20.10        # 注意,此处的IP与ens33.10并不在同一网段
PREFIX=24
GATEWAY=192.168.20.2
VLAN=yes
[root@docker01 network-scripts]# ifdown ens33;ifup ens33     #重启网卡,使更改生效
[root@docker01 network-scripts]# ifup ens33.10   # 启动该网卡
[root@docker01 network-scripts]# ifup ens33.20   # 启动
[root@docker01 ~]# docker network create -d macvlan --subnet 172.10.16.0/24 --gateway 172.10.16.1 -o parent=ens33.10 mac_net10
#创建一个macvlan网络,给其定义一个网段、网关及绑定到ens33.10
[root@docker01 ~]# docker network create -d macvlan --subnet 172.20.16.0/24 --gateway 172.20.16.1 -o parent=ens33.20 mac_net20
#创建一个macvlan网络,给其定义一个网段、网关及绑定到ens33.20
#接下来分别基于刚刚创建的macvlan网络运行一个容器

2、第二台docker服务器配置如下(基本与第一台操作类似,要注意IP不要冲突)

[root@docker02 ~]# ip link set ens33 promisc on    # 开启混杂模式
[root@docker02 ~]# ip link show ens33
2: ens33: <BROADCAST,MULTICAST,'PROMISC',UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
  link/ether 00:0c:29:b5:bc:ed brd ff:ff:ff:ff:ff:ff
[root@docker02 ~]# modinfo 8021q
返回信息可参考图一
[root@docker02 ~]# modprobe 8021q   #若没有加载8021q模块,则执行此命令
[root@docker02 ~]# cd /etc/sysconfig/network-scripts/
[root@docker02 network-scripts]# vim ifcfg-ens33
      ...............#省略部分内容
BOOTPROTO=manual
[root@docker02 network-scripts]# scp root@192.168.171.151:/etc/sysconfig/network-scripts/ifcfg-ens33.* .         # 要注意后面的“.”
ifcfg-ens33.10                            100% 128  83.4KB/s  00:00
ifcfg-ens33.20                            100% 124  75.0KB/s  00:00
[root@docker02 network-scripts]# vim ifcfg-ens33.10
BOOTPROTO=none
NAME=ens33.10
DEVICE=ens33.10
ONBOOT=yes
IPADDR=192.168.10.11      # 更改IP,以防和第一台冲突
PREFIX=24
GATEWAY=192.168.10.2
VLAN=yes
[root@docker02 network-scripts]# vim ifcfg-ens33.20 

BOOTPROTO=none
NAME=ens33.20
DEVICE=ens33.20
ONBOOT=yes
IPADDR=192.168.20.11
PREFIX=24
GATEWAY=192.168.20.2
VLAN=yes
[root@docker02 network-scripts]# ifdown ens33;ifup ens33     # 重启网卡 ,使配置生效
[root@docker02 network-scripts]# ifup ens33.10   # 启动网卡
[root@docker02 network-scripts]# ifup ens33.20
#接下来创建macvlan网络,与第一台docker服务器创建的网络一样
[root@docker02 ~]# docker network create -d macvlan --subnet 172.10.16.0/24 --gateway 172.10.16.1 -o parent=ens33.10 mac_net10
[root@docker02 ~]# docker network create -d macvlan --subnet 172.20.16.0/24 --gateway 172.20.16.1 -o parent=ens33.20 mac_net20
[root@docker02 ~]# docker run -itd --name test3 --network mac_net10 --ip 172.10.16.11 busybox
[root@docker02 ~]# docker run -itd --name test4 --network mac_net20 --ip 172.20.16.21 busybox

配置至此,即可进行ping测试了,如果配置无误,则test3应该和test1互通(因为其都是基于mac_net10网络);test4应该和test2互通(同理)。

但test3和test1不能和test4和test2互通(因为其不是基于同一个虚拟局域网)。

容器test3 ping 容器test1测试(注意:若是使用vmware虚拟机进行测试,由于vmware的特性,需将其网络适配器改为“桥接模式”,而不是NAT模式等。否则无法通信)

容器test4 ping 容器test2测试:

至此,跨主机网络多网段已经实现,同样,各个容器无法与外网进行通信。若有耐心,还是建议阅读docker官方文档

到此这篇关于Docker 容器跨主机多网段通信解决方案的文章就介绍到这了,更多相关Docker 容器跨主机多网段通信内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 详解Docker容器跨主机通信的方法

    默认情况下Docker容器需要跨主机通信两个主机节点都需要在同一个网段下,这时只要两个Docker容器的宿主机能相互通信并且该容器使用net网络模式,改实现方式为网桥模式通信: 除此之外我们还可以通过使用第三方工具为不同主机间创建一个覆盖网络,使之能够 跨节点通信 ,这里将使用Flanneld实现: 安装etcd 创建 cat /etc/etcd/etcd.conf文件 # [member] ETCD_NAME=infra1 ETCD_DATA_DIR="/var/lib/etcd"

  • Docker跨主机容器通信overlay实现过程详解

    同样是两台服务器: 准备工作: 设置容器的主机名 consul:kv类型的存储数据库(key:value) docker01.02上: vim /etc/docker/daemon.json { "hosts":["tcp://0.0.0.0:2376","unix:///var/run/docker.sock"], 这行改了要修改自己的docker配置文件 "cluster-store": "consul://10

  • Docker容器跨主机通信中直接路由方式详解

    概述 就目前Docker自身默认的网络来说,单台主机上的不同Docker容器可以借助docker0网桥直接通信,这没毛病,而不同主机上的Docker容器之间只能通过在主机上用映射端口的方法来进行通信,有时这种方式会很不方便,甚至达不到我们的要求,因此位于不同物理机上的Docker容器之间直接使用本身的IP地址进行通信很有必要.再者说,如果将Docker容器起在不同的物理主机上,我们不可避免的会遭遇到Docker容器的跨主机通信问题.本文就来尝试一下. 方案原理分析 由于使用容器的IP进行路由,就

  • Docker学习笔记之Weave实现跨主机容器互联

    Docker的原生网络支持非常有限,且没有跨主机的集群网络方案.目前实现Docker网络的开源方案有Weave.Kubernetes.Flannel.Pipework以及SocketPlane等,其中Weave被评价为目前最靠谱的,那么这里就对Weave的基本原理及使用方法做个总结. 简介 Weave是由Zett.io公司开发的,它能够创建一个虚拟网络,用于连接部署在多台主机上的Docker容器,这样容器就像被接入了同一个网络交换机,那些使用网络的应用程序不必去配置端口映射和链接等信息.外部设备

  • Docker基于macvlan实现跨主机容器通信

    找两台测试机: [root@docker1 centos_zabbix]# docker network ls NETWORK ID NAME DRIVER SCOPE 19ac9a55bedb bridge bridge local 0a3cbfe2473f host host local aab77f02a0b1 none null local [root@docker1 centos_zabbix]# docker network create --driver macvlan --sub

  • docker部署Macvlan实现跨主机网络通信的实现

    基本概念: Macvlan工作原理: Macvlan是Linux内核支持的网络接口.要求的Linux内部版本是v3.9–3.19和4.0+:通过为物理网卡创建Macvlan子接口,允许一块物理网卡拥有多个独立的MAC地址和IP地址.虚拟出来的子接口将直接暴露在相邻物理网络中.从外部看来,就像是把网线隔开多股,分别接受了不同的主机上一样:物理网卡收到包后,会根据收到包的目的MAC地址判断这个包需要交给其中虚拟网卡. 当容器需要直连入物理网络时,可以使用Macvlan.Macvlan本身不创建网络,

  • Docker跨主机网络(manual)的实现

    1. Macvlan 简介 在 Macvlan 出现之前,我们只能为一块以太网卡添加多个 IP 地址,却不能添加多个 MAC 地址,因为 MAC 地址正是通过其全球唯一性来标识一块以太网卡的,即便你使用了创建 ethx:y 这样的方式,你会发现所有这些"网卡"的 MAC 地址和 ethx 都是一样的,本质上,它们还是一块网卡,这将限制你做很多二层的操作.有了 Macvlan 技术,你可以这么做了. Macvlan 允许你在主机的一个网络接口上配置多个虚拟的网络接口,这些网络 inter

  • Docker跨主机网络(overlay)的实现

    一.Docker 跨主机通信 Docker跨主机网络方案包括: docker 原生的 overlay 和 macvlan. 第三方方案:常用的包括 flannel.weave 和 calico. docker 通过 libnetwork 以及 CNM 将上述各种方案与docker集成在一起. libnetwork 是 docker 容器网络库,最核心的内容是其定义的 Container Network Model (CNM),这个模型对容器网络进行了抽象,由以下三类组件组成: 1.1 Sandb

  • 详解Docker 容器跨主机多网段通信解决方案

    一.MacVlan 实现Docker的跨主机网络通信的方案有很多,如之前博文中写到的通过部署 Consul服务实现Docker容器跨主机通信 Macvlan工作原理: Macvlan是Linux内核支持的网络接口.要求的Linux内部版本是v3.9–3.19和4.0+: 通过为物理网卡创建Macvlan子接口,允许一块物理网卡拥有多个独立的MAC地址和IP地址.虚拟出来的子接口将直接暴露在相邻物理网络中.从外部看来,就像是把网线隔开多股,分别接受了不同的主机上一样: 物理网卡收到包后,会根据收到

  • 详解docker容器的层的概念

    今天我们看看容器的层的概念. 上一节中,我们知道了,容器是一个进程,在这个进程的基础上,添加了下面3个部分: 1.启动Linux Namespace的配置实现与物理机的隔离. 2.设置Cgroups参数限制容器的资源. 3.生成系统文件目录,也就是rootfs文件,也叫镜像文件 这里需要备注的是:rootfs只是容器需要使用的基本文件的组合,并不包括操作系统内核,容器的操作系统内核依旧是使用宿主机的内核.当然,rootfs的存在,并不是没有意义,它的存在,使得容器拥有了一个最主要的性能:一致性.

  • Docker容器跨主机通信overlay网络的解决方案

    目录 一.Docker主机间容器通信的解决方案 二.Docker Overlay Network 三.使用键值存储搭建Docker主机集群 4.1 系统环境 4.2 安装Consul 4.3 节点配置Dockre守护进程连接Consul 4.4 查看consul 中的节点信息 4.5 创建overlay网络 4.6 使用overlay网络启动容器 一.Docker主机间容器通信的解决方案 Docker网络驱动 Overlay: 基于VXLAN封装实现Docker原生Overlay网络 Macvl

  • 详解Docker 容器互联方法

    Docker容器都是独立的,互相隔离的环境.然而,它们通常只有互相通信时才能发挥作用. 虽然有许多方法可以连接容器们,可是我将并不会试着去将其全部讨论在内.但是在这一系列的方法中,我们将看看那些常用的做法. 虽然看起来是很浅显,但是这对于与Docker成天打交道的朋友来说,理解这些技术及底层的设计理念就显得非常地重要了. 理解这些主题将会: 帮助开发和运维人员探索广泛的容器部署的选择. 让开发和运维人员更自信的着手于微服务microservice架构设计. 让开发和运维人员可以较好的编排更复杂的

  • 详解Docker容器可视化监控中心搭建

    概述 一个宿主机上可以运行多个容器化应用,容器化应用运行于宿主机上,我们需要知道该容器的运行情况,包括 CPU使用率.内存占用.网络状况以及磁盘空间等等一系列信息,而且这些信息随时间变化,我们称其为时序数据,本文将实操 如何搭建一个可视化的监控中心 来收集这些承载着具体应用的容器的时序信息并可视化分析与展示! 动手了,动手了... 准备镜像 adviser:负责收集容器的随时间变化的数据 influxdb:负责存储时序数据 grafana:负责分析和展示时序数据 部署Influxdb服务 可以将

  • 详解docker容器分配静态IP

    最近因为工作要求需要用学习使用docker,最后卡在了网络配置这一块.默认情况下启动容器的时候,docker容器使用的是bridge策略比如: docker run -ti ubuntu:latest /bin/bash 等效于 docker run -ti --net=bridge ubuntu:latest /bin/bash bridge策略下,docker容器自动为我们分配了一个IP地址,并连接到docker0的网桥上.但这里有一个问题,这个IP地址并不是静态分配的,这对我们的对容器的实

  • 详解Docker容器数据卷

    是什么 先来看看Docker的理念: 将运用与运行的环境打包形成容器运行,运行可以伴随着容器,但是我们对数据的要求希望是持久化的容器之间希望有可能共享数据 Docker容器产生的数据,如果不通过docker commit生成新的镜像,使得数据做为镜像的一部分保存下来, 那么当容器删除后,数据自然也就没有了. 为了能保存数据在docker中我们使用卷. 一句话:有点类似我们Redis里面的RDB和AOF 能干嘛 卷就是目录或文件,存在于一个或多个容器中,由docker挂载到容器,但不属于联合文件系

  • 详解Docker 容器使用 cgroups 限制资源使用

    上一篇文章将到 Docker 容器使用 linux namespace 来隔离其运行环境,使得容器中的进程看起来就像爱一个独立环境中运行一样.但是,光有运行环境隔离还不够,因为这些进程还是可以不受限制地使用系统资源,比如网络.磁盘.CPU以及内存 等.为了让容器中的进程更加可控,Docker 使用 Linux cgroups 来限制容器中的进程允许使用的系统资源. 1. 基础知识:Linux control groups 1.1 概念 Linux Cgroup 可​​​让​​​您​​​为​​​系

随机推荐