使用Python求解带约束的最优化问题详解

题目:

1. 利用拉格朗日乘子法

#导入sympy包,用于求导,方程组求解等等
from sympy import * 

#设置变量
x1 = symbols("x1")
x2 = symbols("x2")
alpha = symbols("alpha")
beta = symbols("beta")

#构造拉格朗日等式
L = 10 - x1*x1 - x2*x2 + alpha * (x1*x1 - x2) + beta * (x1 + x2)

#求导,构造KKT条件
difyL_x1 = diff(L, x1) #对变量x1求导
difyL_x2 = diff(L, x2) #对变量x2求导
difyL_beta = diff(L, beta) #对乘子beta求导
dualCpt = alpha * (x1 * x1 - x2) #对偶互补条件

#求解KKT等式
aa = solve([difyL_x1, difyL_x2, difyL_beta, dualCpt], [x1, x2, alpha, beta])

#打印结果,还需验证alpha>=0和不等式约束<=0
for i in aa:
 if i[2] >= 0:
 if (i[0]**2 - i[1]) <= 0:
  print(i)

结果:

(-1, 1, 4, 6)
(0, 0, 0, 0)

2. scipy包里面的minimize函数求解

from scipy.optimize import minimize
import numpy as np 

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import pyplot as plt 

#目标函数:
def func(args):
 fun = lambda x: 10 - x[0]**2 - x[1]**2
 return fun

#约束条件,包括等式约束和不等式约束
def con(args):
 cons = ({'type': 'ineq', 'fun': lambda x: x[1]-x[0]**2},
  {'type': 'eq', 'fun': lambda x: x[0]+x[1]})
 return cons 

#画三维模式图
def draw3D():
 fig = plt.figure()
 ax = Axes3D(fig)
 x_arange = np.arange(-5.0, 5.0)
 y_arange = np.arange(-5.0, 5.0)
 X, Y = np.meshgrid(x_arange, y_arange)
 Z1 = 10 - X**2 - Y**2
 Z2 = Y - X**2
 Z3 = X + Y
 plt.xlabel('x')
 plt.ylabel('y')
 ax.plot_surface(X, Y, Z1, rstride=1, cstride=1, cmap='rainbow')
 ax.plot_surface(X, Y, Z2, rstride=1, cstride=1, cmap='rainbow')
 ax.plot_surface(X, Y, Z3, rstride=1, cstride=1, cmap='rainbow')
 plt.show()

#画等高线图
def drawContour():
 x_arange = np.linspace(-3.0, 4.0, 256)
 y_arange = np.linspace(-3.0, 4.0, 256)
 X, Y = np.meshgrid(x_arange, y_arange)
 Z1 = 10 - X**2 - Y**2
 Z2 = Y - X**2
 Z3 = X + Y
 plt.xlabel('x')
 plt.ylabel('y')
 plt.contourf(X, Y, Z1, 8, alpha=0.75, cmap='rainbow')
 plt.contourf(X, Y, Z2, 8, alpha=0.75, cmap='rainbow')
 plt.contourf(X, Y, Z3, 8, alpha=0.75, cmap='rainbow')
 C1 = plt.contour(X, Y, Z1, 8, colors='black')
 C2 = plt.contour(X, Y, Z2, 8, colors='blue')
 C3 = plt.contour(X, Y, Z3, 8, colors='red')
 plt.clabel(C1, inline=1, fontsize=10)
 plt.clabel(C2, inline=1, fontsize=10)
 plt.clabel(C3, inline=1, fontsize=10)
 plt.show()

if __name__ == "__main__":
 args = ()
 args1 = ()
 cons = con(args1)
 x0 = np.array((1.0, 2.0)) #设置初始值,初始值的设置很重要,很容易收敛到另外的极值点中,建议多试几个值

 #求解#
 res = minimize(func(args), x0, method='SLSQP', constraints=cons)
 #####
 print(res.fun)
 print(res.success)
 print(res.x)

 # draw3D()
 drawContour()

结果:

7.99999990708696
True
[-1.00000002 1.00000002]

以上这篇使用Python求解带约束的最优化问题详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python 寻找优化使成本函数最小的最优解的方法

    今天来学习变量优化问题.寻找使成本函数最小的题解.适用于题解相互独立的情况,设计随机优化算法.爬山法.模拟退火算法.遗传算法. 优化问题的的精髓是:1.将题解转化为数字序列化,可以写出题解范围.2.成本函数能返回值 问题场景: 所有乘客从不同的地方飞到同一个目的地,服务人员等待所有人到来以后将人一次性接走. 离开时,服务人员将人一次性带到飞机场,所有乘客等待自己的航班离开. 要解决的问题: 如何设置乘客的到来和离开航班,以及接送机的时间,使得总代价最小. 将题解设为数字序列. 数字表示某人乘坐的

  • Python递归及尾递归优化操作实例分析

    本文实例讲述了Python递归及尾递归优化操作.分享给大家供大家参考,具体如下: 1.递归介绍 递归简而言之就是自己调用自己.使用递归解决问题的核心就是分析出递归的模型,看这个问题能拆分出和自己类似的问题并且有一个递归出口.比如最简单的就5的阶乘,可以把它拆分成5*4!,然后求4!又可以调用自己,这种问题显然可以用递归解决,递归的出口就是求1!,可以直接返回1.用Python实现如下: def fact(n): if n==1: return n return n*fact(n - 1); pr

  • 有关Tensorflow梯度下降常用的优化方法分享

    1.tf.train.exponential_decay() 指数衰减学习率: #tf.train.exponential_decay(learning_rate, global_steps, decay_steps, decay_rate, staircase=True/False): #指数衰减学习率 #learning_rate-学习率 #global_steps-训练轮数 #decay_steps-完整的使用一遍训练数据所需的迭代轮数:=总训练样本数/batch #decay_rate-

  • 详解PyTorch批训练及优化器比较

    一.PyTorch批训练 1. 概述 PyTorch提供了一种将数据包装起来进行批训练的工具--DataLoader.使用的时候,只需要将我们的数据首先转换为torch的tensor形式,再转换成torch可以识别的Dataset格式,然后将Dataset放入DataLoader中就可以啦. import torch import torch.utils.data as Data torch.manual_seed(1) # 设定随机数种子 BATCH_SIZE = 5 x = torch.li

  • 使用Python求解带约束的最优化问题详解

    题目: 1. 利用拉格朗日乘子法 #导入sympy包,用于求导,方程组求解等等 from sympy import * #设置变量 x1 = symbols("x1") x2 = symbols("x2") alpha = symbols("alpha") beta = symbols("beta") #构造拉格朗日等式 L = 10 - x1*x1 - x2*x2 + alpha * (x1*x1 - x2) + beta

  • python自带的http模块详解

    挺久没写博客了,因为博主开始了今年另一段美好的实习经历,学习加做项目,时间已排满:很感谢今年这两段经历,让我接触了golang和python,学习不同语言,可以跳出之前学习c/c++思维的限制,学习golang和python的优秀特性以及了解在不同的场景,适用不同的语言:而之前学习linux和c/c++,也使我很快就上手golang和python; 我学习的习惯,除了学习如何使用,还喜欢研究源码,学习运行机制,这样用起来才会得心应手或者说,使用这些语言或框架,就和平时吃饭睡觉一样,非常自然:因为

  • Python命令启动Web服务器实例详解

    Python命令启动Web服务器实例详解 利用Python自带的包可以建立简单的web服务器.在DOS里cd到准备做服务器根目录的路径下,输入命令: python -m Web服务器模块 [端口号,默认8000] 例如: python -m SimpleHTTPServer 8080 然后就可以在浏览器中输入 http://localhost:端口号/路径 来访问服务器资源. 例如: http://localhost:8080/index.htm(当然index.htm文件得自己创建) 其他机器

  • Python爬虫爬验证码实现功能详解

    主要实现功能: - 登陆网页 - 动态等待网页加载 - 验证码下载 很早就有一个想法,就是自动按照脚本执行一个功能,节省大量的人力--个人比较懒.花了几天写了写,本着想完成验证码的识别,从根本上解决问题,只是难度太高,识别的准确率又太低,计划再次告一段落. 希望这次经历可以与大家进行分享和交流. Python打开浏览器 相比与自带的urllib2模块,操作比较麻烦,针对于一部分网页还需要对cookie进行保存,很不方便.于是,我这里使用的是Python2.7下的selenium模块进行网页上的操

  • Python selenium 三种等待方式详解(必会)

    很多人在群里问,这个下拉框定位不到.那个弹出框定位不到-各种定位不到,其实大多数情况下就是两种问题:1 有frame,2 没有加等待.殊不知,你的代码运行速度是什么量级的,而浏览器加载渲染速度又是什么量级的,就好比闪电侠和凹凸曼约好去打怪兽,然后闪电侠打完回来之后问凹凸曼你为啥还在穿鞋没出门?凹凸曼分分中内心一万只羊驼飞过,欺负哥速度慢,哥不跟你玩了,抛个异常撂挑子了. 那么怎么才能照顾到凹凸曼缓慢的加载速度呢?只有一个办法,那就是等喽.说到等,又有三种等法,且听博主一一道来: 1. 强制等待

  • python实现图片处理和特征提取详解

    这是一张灵异事件图...开个玩笑,这就是一张普通的图片. 毫无疑问,上面的那副图画看起来像一幅电脑背景图片.这些都归功于我的妹妹,她能够将一些看上去奇怪的东西变得十分吸引眼球.然而,我们生活在数字图片的年代,我们也很少去想这些图片是在怎么存储在存储器上的或者去想这些图片是如何通过各种变化生成的. 在这篇文章中,我将带着你了解一些基本的图片特征处理.data massaging 依然是一样的:特征提取,但是这里我们还需要对跟多的密集数据进行处理,但同时数据清理是在数据库.表.文本等中进行.这是如何

  • Python面向对象编程之继承与多态详解

    本文实例讲述了Python面向对象编程之继承与多态.分享给大家供大家参考,具体如下: Python 类的继承 在OOP(Object Oriented Programming)程序设计中,当我们定义一个class的时候,可以从某个现有的class 继承,新的class称为子类(Subclass),而被继承的class称为基类.父类或超类(Base class.Super class). 我们先来定义一个class Person,表示人,定义属性变量 name 及 sex (姓名和性别): 定义一

  • 基于Python的文件类型和字符串详解

    1. Python的文件类型 1. 源代码--直接由Python解析 vi 1.py #!/usr/bin/python print 'hello world' 这里的1.py就是源代码 执行方式和shell脚本类似: chmod +x 后,./1.py Python 1.py 2. 字节代码 Python源码文件经编译后生成的扩展名为pyc的文件 编译方法: [root@t1 py]# cat 2.py #!/usr/bin/python import py_compile py_compil

  • Python中协程用法代码详解

    本文研究的主要是python中协程的相关问题,具体介绍如下. Num01–>协程的定义 协程,又称微线程,纤程.英文名Coroutine. 首先我们得知道协程是啥?协程其实可以认为是比线程更小的执行单元. 为啥说他是一个执行单元,因为他自带CPU上下文.这样只要在合适的时机, 我们可以把一个协程 切换到另一个协程. 只要这个过程中保存或恢复 CPU上下文那么程序还是可以运行的. Num02–>协程和线程的差异 那么这个过程看起来和线程差不多.其实不然, 线程切换从系统层面远不止保存和恢复 CP

  • Python比较配置文件的方法实例详解

    工作中最常见的配置文件有四种:普通key=value的配置文件.Json格式的配置文件.HTML格式的配置文件以及YMAML配置文件. 这其中以第一种居多,后三种在成熟的开源产品中较为常见,本文只针对第一种配置文件. 一般来说Linux shell下提供了diff命令来比较普通文本类的配置文件,Python的difflib也提供了str和HTML的比较接口,但是实际项目中这些工具其实并不好用,主要是因为我们的配置文件并不是标准化统一化的. 为了解决此类问题,最好针对特定的项目写特定的配置文件比较

随机推荐