python梯度下降算法的实现

本文实例为大家分享了python实现梯度下降算法的具体代码,供大家参考,具体内容如下

简介

本文使用python实现了梯度下降算法,支持y = Wx+b的线性回归
目前支持批量梯度算法和随机梯度下降算法(bs=1)
也支持输入特征向量的x维度小于3的图像可视化
代码要求python版本>3.4

代码

'''
梯度下降算法
Batch Gradient Descent
Stochastic Gradient Descent SGD
'''
__author__ = 'epleone'
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import sys

# 使用随机数种子, 让每次的随机数生成相同,方便调试
# np.random.seed(111111111)

class GradientDescent(object):
 eps = 1.0e-8
 max_iter = 1000000 # 暂时不需要
 dim = 1
 func_args = [2.1, 2.7] # [w_0, .., w_dim, b]

 def __init__(self, func_arg=None, N=1000):
 self.data_num = N
 if func_arg is not None:
 self.FuncArgs = func_arg
 self._getData()

 def _getData(self):
 x = 20 * (np.random.rand(self.data_num, self.dim) - 0.5)
 b_1 = np.ones((self.data_num, 1), dtype=np.float)
 # x = np.concatenate((x, b_1), axis=1)
 self.x = np.concatenate((x, b_1), axis=1)

 def func(self, x):
 # noise太大的话, 梯度下降法失去作用
 noise = 0.01 * np.random.randn(self.data_num) + 0
 w = np.array(self.func_args)
 # y1 = w * self.x[0, ] # 直接相乘
 y = np.dot(self.x, w) # 矩阵乘法
 y += noise
 return y

 @property
 def FuncArgs(self):
 return self.func_args

 @FuncArgs.setter
 def FuncArgs(self, args):
 if not isinstance(args, list):
 raise Exception(
 'args is not list, it should be like [w_0, ..., w_dim, b]')
 if len(args) == 0:
 raise Exception('args is empty list!!')
 if len(args) == 1:
 args.append(0.0)
 self.func_args = args
 self.dim = len(args) - 1
 self._getData()

 @property
 def EPS(self):
 return self.eps

 @EPS.setter
 def EPS(self, value):
 if not isinstance(value, float) and not isinstance(value, int):
 raise Exception("The type of eps should be an float number")
 self.eps = value

 def plotFunc(self):
 # 一维画图
 if self.dim == 1:
 # x = np.sort(self.x, axis=0)
 x = self.x
 y = self.func(x)
 fig, ax = plt.subplots()
 ax.plot(x, y, 'o')
 ax.set(xlabel='x ', ylabel='y', title='Loss Curve')
 ax.grid()
 plt.show()
 # 二维画图
 if self.dim == 2:
 # x = np.sort(self.x, axis=0)
 x = self.x
 y = self.func(x)
 xs = x[:, 0]
 ys = x[:, 1]
 zs = y
 fig = plt.figure()
 ax = fig.add_subplot(111, projection='3d')
 ax.scatter(xs, ys, zs, c='r', marker='o')

 ax.set_xlabel('X Label')
 ax.set_ylabel('Y Label')
 ax.set_zlabel('Z Label')
 plt.show()
 else:
 # plt.axis('off')
 plt.text(
 0.5,
 0.5,
 "The dimension(x.dim > 2) \n is too high to draw",
 size=17,
 rotation=0.,
 ha="center",
 va="center",
 bbox=dict(
  boxstyle="round",
  ec=(1., 0.5, 0.5),
  fc=(1., 0.8, 0.8), ))
 plt.draw()
 plt.show()
 # print('The dimension(x.dim > 2) is too high to draw')

 # 梯度下降法只能求解凸函数
 def _gradient_descent(self, bs, lr, epoch):
 x = self.x
 # shuffle数据集没有必要
 # np.random.shuffle(x)
 y = self.func(x)
 w = np.ones((self.dim + 1, 1), dtype=float)
 for e in range(epoch):
 print('epoch:' + str(e), end=',')
 # 批量梯度下降,bs为1时 等价单样本梯度下降
 for i in range(0, self.data_num, bs):
 y_ = np.dot(x[i:i + bs], w)
 loss = y_ - y[i:i + bs].reshape(-1, 1)
 d = loss * x[i:i + bs]
 d = d.sum(axis=0) / bs
 d = lr * d
 d.shape = (-1, 1)
 w = w - d

 y_ = np.dot(self.x, w)
 loss_ = abs((y_ - y).sum())
 print('\tLoss = ' + str(loss_))
 print('拟合的结果为:', end=',')
 print(sum(w.tolist(), []))
 print()
 if loss_ < self.eps:
 print('The Gradient Descent algorithm has converged!!\n')
 break
 pass

 def __call__(self, bs=1, lr=0.1, epoch=10):
 if sys.version_info < (3, 4):
 raise RuntimeError('At least Python 3.4 is required')
 if not isinstance(bs, int) or not isinstance(epoch, int):
 raise Exception(
 "The type of BatchSize/Epoch should be an integer number")
 self._gradient_descent(bs, lr, epoch)
 pass

 pass

if __name__ == "__main__":
 if sys.version_info < (3, 4):
 raise RuntimeError('At least Python 3.4 is required')

 gd = GradientDescent([1.2, 1.4, 2.1, 4.5, 2.1])
 # gd = GradientDescent([1.2, 1.4, 2.1])
 print("要拟合的参数结果是: ")
 print(gd.FuncArgs)
 print("===================\n\n")
 # gd.EPS = 0.0
 gd.plotFunc()
 gd(10, 0.01)
 print("Finished!")

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python梯度下降法的简单示例

    梯度下降法的原理和公式这里不讲,就是一个直观的.易于理解的简单例子. 1.最简单的情况,样本只有一个变量,即简单的(x,y).多变量的则可为使用体重或身高判断男女(这是假设,并不严谨),则变量有两个,一个是体重,一个是身高,则可表示为(x1,x2,y),即一个目标值有两个属性. 2.单个变量的情况最简单的就是,函数hk(x)=k*x这条直线(注意:这里k也是变化的,我们的目的就是求一个最优的   k).而深度学习中,我们是不知道函数的,也就是不知道上述的k.   这里讨论单变量的情况: 在不知道

  • python实现随机梯度下降法

    看这篇文章前强烈建议你看看上一篇python实现梯度下降法: 一.为什么要提出随机梯度下降算法 注意看梯度下降法权值的更新方式(推导过程在上一篇文章中有) 也就是说每次更新权值都需要遍历整个数据集(注意那个求和符号),当数据量小的时候,我们还能够接受这种算法,一旦数据量过大,那么使用该方法会使得收敛过程极度缓慢,并且当存在多个局部极小值时,无法保证搜索到全局最优解.为了解决这样的问题,引入了梯度下降法的进阶形式:随机梯度下降法. 二.核心思想 对于权值的更新不再通过遍历全部的数据集,而是选择其中

  • python+numpy+matplotalib实现梯度下降法

    这个阶段一直在做和梯度一类算法相关的东西,索性在这儿做个汇总, 一.算法论述 梯度下降法(gradient  descent)别名最速下降法(曾经我以为这是两个不同的算法-.-),是用来求解无约束最优化问题的一种常用算法.下面以求解线性回归为题来叙述: 设:一般的线性回归方程(拟合函数)为:(其中的值为1) 则这一组向量参数选择的好与坏就需要一个机制来评估,据此我们提出了其损失函数为(选择均方误差): 我们现在的目的就是使得损失函数取得最小值,即目标函数为: 如果的值取到了0,意味着我们构造出了

  • Python语言描述随机梯度下降法

    1.梯度下降 1)什么是梯度下降? 因为梯度下降是一种思想,没有严格的定义,所以用一个比喻来解释什么是梯度下降. 简单来说,梯度下降就是从山顶找一条最短的路走到山脚最低的地方.但是因为选择方向的原因,我们找到的的最低点可能不是真正的最低点.如图所示,黑线标注的路线所指的方向并不是真正的地方. 既然是选择一个方向下山,那么这个方向怎么选?每次该怎么走? 先说选方向,在算法中是以随机方式给出的,这也是造成有时候走不到真正最低点的原因. 如果选定了方向,以后每走一步,都是选择最陡的方向,直到最低点.

  • 基于随机梯度下降的矩阵分解推荐算法(python)

    SVD是矩阵分解常用的方法,其原理为:矩阵M可以写成矩阵A.B与C相乘得到,而B可以与A或者C合并,就变成了两个元素M1与M2的矩阵相乘可以得到M. 矩阵分解推荐的思想就是基于此,将每个user和item的内在feature构成的矩阵分别表示为M1与M2,则内在feature的乘积得到M:因此我们可以利用已有数据(user对item的打分)通过随机梯度下降的方法计算出现有user和item最可能的feature对应到的M1与M2(相当于得到每个user和每个item的内在属性),这样就可以得到通

  • python实现随机梯度下降(SGD)

    使用神经网络进行样本训练,要实现随机梯度下降算法.这里我根据麦子学院彭亮老师的讲解,总结如下,(神经网络的结构在另一篇博客中已经定义): def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None): if test_data: n_test = len(test_data)#有多少个测试集 n = len(training_data) for j in xrange(epochs): random.shuf

  • 梯度下降法介绍及利用Python实现的方法示例

    本文主要给大家介绍了梯度下降法及利用Python实现的相关内容,分享出来供大家参考学习,下面话不多说,来一起看看详细的介绍吧. 梯度下降法介绍 梯度下降法(gradient descent),又名最速下降法(steepest descent)是求解无约束最优化问题最常用的方法,它是一种迭代方法,每一步主要的操作是求解目标函数的梯度向量,将当前位置的负梯度方向作为搜索方向(因为在该方向上目标函数下降最快,这也是最速下降法名称的由来). 梯度下降法特点:越接近目标值,步长越小,下降速度越慢. 直观上

  • Python编程实现线性回归和批量梯度下降法代码实例

    通过学习斯坦福公开课的线性规划和梯度下降,参考他人代码自己做了测试,写了个类以后有时间再去扩展,代码注释以后再加,作业好多: import numpy as np import matplotlib.pyplot as plt import random class dataMinning: datasets = [] labelsets = [] addressD = '' #Data folder addressL = '' #Label folder npDatasets = np.zer

  • python实现梯度下降算法

    梯度下降(Gradient Descent)算法是机器学习中使用非常广泛的优化算法.当前流行的机器学习库或者深度学习库都会包括梯度下降算法的不同变种实现. 本文主要以线性回归算法损失函数求极小值来说明如何使用梯度下降算法并给出python实现.若有不正确的地方,希望读者能指出. 梯度下降 梯度下降原理:将函数比作一座山,我们站在某个山坡上,往四周看,从哪个方向向下走一小步,能够下降的最快. 在线性回归算法中,损失函数为 在求极小值时,在数据量很小的时候,可以使用矩阵求逆的方式求最优的θ值.但当数

  • python梯度下降算法的实现

    本文实例为大家分享了python实现梯度下降算法的具体代码,供大家参考,具体内容如下 简介 本文使用python实现了梯度下降算法,支持y = Wx+b的线性回归 目前支持批量梯度算法和随机梯度下降算法(bs=1) 也支持输入特征向量的x维度小于3的图像可视化 代码要求python版本>3.4 代码 ''' 梯度下降算法 Batch Gradient Descent Stochastic Gradient Descent SGD ''' __author__ = 'epleone' import

  • 图文详解梯度下降算法的原理及Python实现

    目录 1.引例 2.数值解法 3.梯度下降算法 4.代码实战:Logistic回归 1.引例 给定如图所示的某个函数,如何通过计算机算法编程求f(x)min? 2.数值解法 传统方法是数值解法,如图所示 按照以下步骤迭代循环直至最优: ① 任意给定一个初值x0: ② 随机生成增量方向,结合步长生成Δx: ③ 计算比较f(x0)与f(x0+Δx)的大小,若f(x0+Δx)<f(x0)则更新位置,否则重新生成Δx: ④ 重复②③直至收敛到最优f(x)min. 数值解法最大的优点是编程简明,但缺陷也很

  • python使用梯度下降算法实现一个多线性回归

    python使用梯度下降算法实现一个多线性回归,供大家参考,具体内容如下 图示: import pandas as pd import matplotlib.pylab as plt import numpy as np # Read data from csv pga = pd.read_csv("D:\python3\data\Test.csv") # Normalize the data 归一化值 (x - mean) / (std) pga.AT = (pga.AT - pga

  • python应用Axes3D绘图(批量梯度下降算法)

    本文实例为大家分享了python批量梯度下降算法的具体代码,供大家参考,具体内容如下 问题: 将拥有两个自变量的二阶函数绘制到空间坐标系中,并通过批量梯度下降算法找到并绘制其极值点 大体思路: 首先,根据题意确定目标函数:f(w1,w2) = w1^2 + w2^2 + 2 w1 w2 + 500 然后,针对w1,w2分别求偏导,编写主方法求极值点 而后,创建三维坐标系绘制函数图像以及其极值点即可 具体代码实现以及成像结果如下: import numpy as np import matplot

  • python实现梯度下降算法的实例详解

    python版本选择 这里选的python版本是2.7,因为我之前用python3试了几次,发现在画3d图的时候会报错,所以改用了2.7. 数据集选择 数据集我选了一个包含两个变量,三个参数的数据集,这样可以画出3d图形对结果进行验证. 部分函数总结 symbols()函数:首先要安装sympy库才可以使用.用法: >>> x1 = symbols('x2') >>> x1 + 1 x2 + 1 在这个例子中,x1和x2是不一样的,x2代表的是一个函数的变量,而x1代表

  • python 还原梯度下降算法实现一维线性回归

    首先我们看公式: 这个是要拟合的函数 然后我们求出它的损失函数, 注意:这里的n和m均为数据集的长度,写的时候忘了 注意,前面的theta0-theta1x是实际值,后面的y是期望值 接着我们求出损失函数的偏导数: 最终,梯度下降的算法: 学习率一般小于1,当损失函数是0时,我们输出theta0和theta1. 接下来上代码! class LinearRegression(): def __init__(self, data, theta0, theta1, learning_rate): se

  • 利用Python实现最小二乘法与梯度下降算法

    导入所需库 %matplotlib inline import sympy import numpy as np import matplotlib.pyplot as plt from sympy.abc import x as a,y as b 生成模拟数据 # 模拟函数 y=3x-1 #自变量 x=np.linspace(-5,5,num=1000) #加入噪声 noise=np.random.rand(len(x))*2-1 #因变量 y=3*x-1+noise 查看所生成数据的图像 p

随机推荐