Python进程Multiprocessing模块原理解析

先看看下面的几个方法:

  • star() 方法启动进程,
  • join() 方法实现进程间的同步,等待所有进程退出。
  • close() 用来阻止多余的进程涌入进程池 Pool 造成进程阻塞。

参数:

target 是函数名字,需要调用的函数

args 函数需要的参数,以 tuple 的形式传入

用法:

multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)

写一个的例子:

from multiprocessing import Pool
import os,time

def pr(str):
  print("The " + str + " is %s" %(os.getpid()))
  time.sleep(1)
  print("The " + str + " is close")

if __name__ == "__main__":

  print('-------------------------------')
  print("the current pid: "+ str(os.getpid()))
  # 默认为自己电脑的核数
  p = Pool(2)
  for i in range(5):
    p.apply_async(pr,args=('xdxd',))
  p.close()
  p.join()
  print("----------close-----------------")

通过结果可以看出,是2个进程同时启动,同时启动的进程数与pool中设置的数量和自己电脑的核数有关

结果:

-------------------------------
the current pid: 9562
The xdxd is 9563
The xdxd is 9564
The xdxd is close
The xdxd is close
The xdxd is 9563
The xdxd is 9564
The xdxd is close
The xdxd is close
The xdxd is 9563
The xdxd is close
----------close-----------------

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python multiprocessing模块用法及原理介绍

    一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu\_count\(\)查看),在python中大部分情况需要使用多进程. Python提供了multiprocessing. multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似. multiprocessing模块的功能众多:支持子进程.通信和共享数据.执行不同形式的同步,

  • Python3多进程 multiprocessing 模块实例详解

    本文实例讲述了Python3多进程 multiprocessing 模块.分享给大家供大家参考,具体如下: 多进程 Multiprocessing 模块 multiprocessing 模块官方说明文档 Process 类 Process 类用来描述一个进程对象.创建子进程的时候,只需要传入一个执行函数和函数的参数即可完成 Process 示例的创建. star() 方法启动进程, join() 方法实现进程间的同步,等待所有进程退出. close() 用来阻止多余的进程涌入进程池 Pool 造

  • Python多进程池 multiprocessing Pool用法示例

    本文实例讲述了Python多进程池 multiprocessing Pool用法.分享给大家供大家参考,具体如下: 1. 背景 由于需要写python程序, 定时.大量发送htttp请求,并对结果进行处理. 参考其他代码有进程池,记录一下. 2. 多进程 vs 多线程 c++程序中,单个模块通常是单进程,会启动几十.上百个线程,充分发挥机器性能.(目前c++11有了std::thread编程多线程很方便,可以参考我之前的博客) shell脚本中,都是多进程后台执行.({ ...} &, 可以参考

  • python multiprocessing多进程变量共享与加锁的实现

    python多进程和多线程是大家会重点了解的部分,因为很多工作如果并没有前后相互依赖关系的话其实顺序并不是非常的重要,采用顺序执行的话就必定会造成无谓的等待,任凭cpu和内存白白浪费,这是我们不想看到的. 为了解决这个问题,我们就可以采用多线程或者多进程的方式,(多线程我们之后再讲),而这两者之间是有本质区别的.就内存而言,已知进程是在执行过程中有独立的内存单元的,而多个线程是共享内存的,这是多进程和多线程的一大区别. 利用Value在不同进程中同步变量 在多进程中,由于进程之间内存相互是隔离的

  • Python多进程multiprocessing.Pool类详解

    multiprocessing模块 multiprocessing包是Python中的多进程管理包.它与 threading.Thread类似,可以利用multiprocessing.Process对象来创建一个进程.该进程可以允许放在Python程序内部编写的函数中.该Process对象与Thread对象的用法相同,拥有is_alive().join([timeout]).run().start().terminate()等方法.属性有:authkey.daemon(要通过start()设置)

  • Python multiprocessing多进程原理与应用示例

    本文实例讲述了Python multiprocessing多进程原理与应用.分享给大家供大家参考,具体如下: multiprocessing包是Python中的多进程管理包,可以利用multiprocessing.Process对象来创建进程,Process对象拥有is_alive().join([timeout]).run().start().terminate()等方法. multprocessing模块的核心就是使管理进程像管理线程一样方便,每个进程有自己独立的GIL,所以不存在进程间争抢

  • Python Multiprocessing多进程 使用tqdm显示进度条的实现

    1.背景 在python运行一些,计算复杂度比较高的函数时,服务器端单核CPU的情况比较耗时,因此需要多CPU使用多进程加快速度 2.函数要求 笔者使用的是:pathos.multiprocessing 库,进度条显示用tqdm库,安装方法: pip install pathos 安装完成后 from pathos.multiprocessing import ProcessingPool as Pool from tqdm import tqdm 这边使用pathos的原因是因为,multip

  • Python进程间通信 multiProcessing Queue队列实现详解

    一.进程间通信 IPC(Inter-Process Communication) IPC机制:实现进程之间通讯 管道:pipe 基于共享的内存空间 队列:pipe+锁的概念--->queue 二.队列(Queue) 2.1 概念-----multiProcess.Queue 创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递. Queue([maxsize])创建共享的进程队列. 参数 :maxsize是队列中允许的最大项数.如果省略此参数,则无大小限制

  • python threading和multiprocessing模块基本用法实例分析

    本文实例讲述了python threading和multiprocessing模块基本用法.分享给大家供大家参考,具体如下: 前言 这两天为了做一个小项目,研究了一下python的并发编程,所谓并发无非多线程和多进程,最初找到的是threading模块,因为印象中线程"轻量...","切换快...","可共享进程资源..."等等,但是没想到这里水很深,进而找到了更好的替代品multiprocessing模块.下面会讲一些使用中的经验. 后面出现的

  • Python进程Multiprocessing模块原理解析

    先看看下面的几个方法: star() 方法启动进程, join() 方法实现进程间的同步,等待所有进程退出. close() 用来阻止多余的进程涌入进程池 Pool 造成进程阻塞. 参数: target 是函数名字,需要调用的函数 args 函数需要的参数,以 tuple 的形式传入 用法: multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None) 写一个的例子:

  • Python常用数据分析模块原理解析

    前言 python是一门优秀的编程语言,而是python成为数据分析软件的是因为python强大的扩展模块.也就是这些python的扩展包让python可以做数据分析,主要包括numpy,scipy,pandas,matplotlib,scikit-learn等等诸多强大的模块,在结合上ipython交互工具 ,以及python强大的爬虫数据获取能力,字符串处理能力,让python成为完整的数据分析工具. numpy 官网:https://www.scipy.org/ NumPy(Numeric

  • Python多线程threading和multiprocessing模块实例解析

    本文研究的主要是Python多线程threading和multiprocessing模块的相关内容,具体介绍如下. 线程是一个进程的实体,是由表示程序运行状态的寄存器(如程序计数器.栈指针)以及堆栈组成,它是比进程更小的单位. 线程是程序中的一个执行流.一个执行流是由CPU运行程序代码并操作程序的数据所形成的.因此,线程被认为是以CPU为主体的行为. 线程不包含进程地址空间中的代码和数据,线程是计算过程在某一时刻的状态.所以,系统在产生一个线程或各个线程之间切换时,负担要比进程小得多. 线程是一

  • python如何重载模块实例解析

    本文首先介绍了Python中的模块的概念,谈到了一个模块往往由多个模块组成,然后通过具体实例,分析了模块重载的相关内容,具体介绍如下. 模块是Python程序架构的一个核心概念,较大的程序往往以多个模块文件的形式呈现,一个模块被设计成主文件或顶层文件,用来启动整个Python程序.每个以.py为后缀的Python源代码文件都是一个模块,其他文件可通过"导入"读取这个模块的内容.从一般意义上讲,模块就是变量名的封装.如写一个模块test.py,包含一个两个变量名name.age. nam

  • 基于python调用psutil模块过程解析

    这篇文章主要介绍了基于python调用psutils模块过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 用Python来编写脚本简化日常的运维工作是Python的一个重要用途.在Linux下,有许多系统命令可以让我们时刻监控系统运行的状态,如ps,top,free等等.要获取这些系统信息,Python可以通过subprocess模块调用并获取结果.但这样做显得很麻烦,尤其是要写很多解析代码. 在Python中获取系统信息的另一个好办法是

  • python标识符命名规范原理解析

    这篇文章主要介绍了python标识符命名规范原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 简单地理解,标识符就是一个名字,就好像我们每个人都有属于自己的名字,它的主要作用就是作为变量.函数.类.模块以及其他对象的名称. Python 中标识符的命名不是随意的,而是要遵守一定的命令规则,比如说: 1.标识符是由字符(A~Z 和 a~z).下划线和数字组成,但第一个字符不能是数字. 2.标识符不能和 Python 中的保留字相同.有关保留

  • python线程join方法原理解析

    这篇文章主要介绍了python线程join方法原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 几个事实 1 python 默认参数创建线程后,不管主线程是否执行完毕,都会等待子线程执行完毕才一起退出,有无join结果一样 2 如果创建线程,并且设置了daemon为true,即thread.setDaemon(True), 则主线程执行完毕后自动退出,不会等待子线程的执行结果.而且随着主线程退出,子线程也消亡. 3 join方法的作用是阻

  • python 日志 logging模块详细解析

    Python 中的 logging 模块可以让你跟踪代码运行时的事件,当程序崩溃时可以查看日志并且发现是什么引发了错误.Log 信息有内置的层级--调试(debugging).信息(informational).警告(warnings).错误(error)和严重错误(critical).你也可以在 logging 中包含 traceback 信息.不管是小项目还是大项目,都推荐在 Python 程序中使用 logging.本文给大家介绍python 日志 logging模块 介绍. 1 基本使用

  • python使用multiprocessing模块实现带回调函数的异步调用方法

    本文实例讲述了python使用multiprocessing模块实现带回调函数的异步调用方法.分享给大家供大家参考.具体分析如下: multipressing模块是python 2.6版本加入的,通过这个模块可以轻松实现异步调用 from multiprocessing import Pool def f(x): return x*x if __name__ == '__main__': pool = Pool(processes=1) # Start a worker processes. r

  • Python @property装饰器原理解析

    这篇文章主要介绍了Python @property装饰器原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.通过@property装饰器,可以直接通过方法名来访问方法,不需要在方法名后添加一对"()"小括号. class Person: def __init__(self, name): self.__name = name @property def say(self): return self.__name xioabai

随机推荐