解决tensorflow打印tensor有省略号的问题

先上代码:

import tensorflow as tf
x = tf.ones(shape=[100, 200], dtype=tf.int32, name='x')
y = tf.zeros(shape=[2, 3], dtype=tf.float32, name='y')
with tf.Session() as sess:
  print(sess.run([x, y]))

输出结果如下:

如果我调试的时候想查看省略号代表的值是什么

只需要改成如下代码就行:

import tensorflow as tf
import numpy as np #借助numpy模块的set_printoptions()函数,将打印上限设置为无限即可
np.set_printoptions(threshold=np.inf)
x = tf.ones(shape=[10, 20], dtype=tf.int32, name='x')
y = tf.zeros(shape=[2, 3], dtype=tf.float32, name='y')
with tf.Session() as sess:
  print(sess.run(x, y))

输出结果如下:可以看到省略号的部分也都打出来了

以上这篇解决tensorflow打印tensor有省略号的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • tensorflow 实现打印pb模型的所有节点

    只有pd模型文件, 打印所有节点 from tensorflow.python.framework import tensor_util from google.protobuf import text_format import tensorflow as tf from tensorflow.python.platform import gfile from tensorflow.python.framework import tensor_util GRAPH_PB_PATH = 'mod

  • Tensorflow获取张量Tensor的具体维数实例

    获取Tensor的维数 >>> import tensorflow as tf >>> tf.__version__ '1.2.0-rc1' >>> x=tf.placeholder(dtype=float32,shape=[1,2,3,4]) >>> x=tf.placeholder(dtype=tf.float32,shape=[1,2,3,4]) >>> x.shape TensorShape([Dimensi

  • TensorFlow实现打印每一层的输出

    在test.py中可以通过如下代码直接生成带weight的pb文件,也可以通过tf官方的freeze_graph.py将ckpt转为pb文件. constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def,['net_loss/inference/encode/conv_output/conv_output']) with tf.gfile.FastGFile('net_model.pb', mod

  • 解决tensorflow打印tensor有省略号的问题

    先上代码: import tensorflow as tf x = tf.ones(shape=[100, 200], dtype=tf.int32, name='x') y = tf.zeros(shape=[2, 3], dtype=tf.float32, name='y') with tf.Session() as sess: print(sess.run([x, y])) 输出结果如下: 如果我调试的时候想查看省略号代表的值是什么 只需要改成如下代码就行: import tensorfl

  • TensorFlow打印tensor值的实现方法

    最近一直在用TF做CNN的图像分类,当softmax层得到预测结果后,我希望能够看到预测结果,以便和标签之间进行比较.特此补上,以便自己记忆. 我现在通过softmax层得到变量train_logits,如果我直接执行print(train_logits)时,得到的结果如下(因为我是134类分类,所以结果是(1,134)维): 这貌似什么都看不出来. 其实tensorflow提供输出中间值方法方便debug. 这个函数就是[tf.Print]. tf.Print( input_, data, m

  • tensorflow: 查看 tensor详细数值方法

    问题 tensor详细数值 不能直接print打印: import tensorflow as tf x = tf.constant(1) print x 输出: Tensor("Const:0", shape=(), dtype=int32) 原因: print只能打印输出shape的信息,而要打印输出tensor的值,需要借助 tf.Session,tf.InteractiveSession. 因为我们在建立graph的时候,只建立 tensor 的 结构形状信息 ,并没有 执行

  • 解决tensorflow模型参数保存和加载的问题

    终于找到bug原因!记一下:还是不熟悉平台的原因造成的! Q:为什么会出现两个模型对象在同一个文件中一起运行,当直接读取他们分开运行时训练出来的模型会出错,而且总是有一个正确,一个读取错误? 而 直接在同一个文件又训练又重新加载模型预测不出错,而且更诡异的是此时用分文件里的对象加载模型不会出错? model.py,里面含有 ModelV 和 ModelP,另外还有 modelP.py 和 modelV.py 分别只含有 ModelP 和 ModeV 这两个对象,先使用 modelP.py 和 m

  • 解决Tensorflow安装成功,但在导入时报错的问题

    在Mac上按照官网教程安装成功tensor flow后,但在程序中导入时,仍然报错,包括但不限于以下两个错误.对于这种错误,原因主要在于Mac内默认的python库比较老了,即便通过pip命令安装了新的包,python也会默认导入默认位置的包.这时候需要做的就是删除,有冲突的包,对于以下两个错误,就是分别时numpy和six两个包冲突了. 可以在python命令行环境下,通过numpy.version和six.version两个命令查看当前版本,如果与预期的不一致,就可以删掉. 可以通过nump

  • 解决tensorflow由于未初始化变量而导致的错误问题

    我写的这个程序 import tensorflow as tf sess=tf.InteractiveSession() x=tf.Variable([1.0,2.0]) a=tf.constant([3.0,3.0]) x.initializer.run() sun=tf.div(x,a) print(sub.eval()) sess.close() 出现了如下所示的错误: 原因是倒数第二行的sub没有初始化,倒数第三行应该是初始化sub的,但是打错了,成了sun,这样后面出现的sub就相当于

  • 解决TensorFlow GPU版出现OOM错误的问题

    问题: 在使用mask_rcnn预测自己的数据集时,会出现下面错误: ResourceExhaustedError: OOM when allocating tensor with shape[1,512,1120,1120] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node rpn_model/rpn_conv_shared/convolution}} =

  • 解决TensorFlow模型恢复报错的问题

    错误信息 Attempting to use uninitialized value input_producer/input_producer/limit_epochs/epochs 今天在模型恢复的时候出现上图报错信息,最后发现是由于调用tf.train.slice_input_producer方法产生的错误信息.它本身认为是一个tensor 修改方法: 获取batch后,在sess中先初始化即可 sess.run(tf.global_variables_initializer()) ses

  • 解决TensorFlow调用Keras库函数存在的问题

    tensorflow在1.4版本引入了keras,封装成库.现想将keras版本的GRU代码移植到TensorFlow中,看到TensorFlow中有Keras库,大喜,故将神经网络定义部分使用Keras的Function API方式进行定义,训练部分则使用TensorFlow来进行编写.一顿操作之后,运行,没有报错,不由得一喜.但是输出结果,发现,和预期的不一样.难道是欠拟合?故采用正弦波预测余弦来验证算法模型. 部分调用keras库代码如上图所示,用正弦波预测余弦波,出现如下现象: def

  • 完美解决TensorFlow和Keras大数据量内存溢出的问题

    内存溢出问题是参加kaggle比赛或者做大数据量实验的第一个拦路虎. 以前做的练手小项目导致新手产生一个惯性思维--读取训练集图片的时候把所有图读到内存中,然后分批训练. 其实这是有问题的,很容易导致OOM.现在内存一般16G,而训练集图片通常是上万张,而且RGB图,还很大,VGG16的图片一般是224x224x3,上万张图片,16G内存根本不够用.这时候又会想起--设置batch,但是那个batch的输入参数却又是图片,它只是把传进去的图片分批送到显卡,而我OOM的地方恰是那个"传进去&quo

随机推荐