Python函数式编程实例详解

本文实例讲述了Python函数式编程。分享给大家供大家参考,具体如下:

函数式编程就是一种抽象程度很高的编程范式,从计算机硬件->汇编语言->C语言->Python抽象程度越高、越贴近于计算,但执行效率也越低。纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用。而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的。函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数!

Python对函数式编程提供部分支持,支持高阶函数(函数可以作为变量传入),支持闭包(返回一个函数),有限地支持匿名函数。由于Python允许使用变量,因此,Python不是纯函数式编程语言。

1、高阶函数

即可以通过变量名指向函数,函数通过变量名作为参数传给另一个函数,并通过变量名来使用。例如下面将开方函数math.sqrt作为参数传递给变量f,变量名f就指向了函数math.sqrt,再通过变量f使用该函数给x、y开方。

import math
def add(x, y, f):
  return f(x) + f(y) # 函数作为参数传递给f来调用
res = add(25, 9, math.sqrt)
print(res)

map函数接收一个函数 f 和一个 list,并把函数 f 依次作用在 list 的每个元素上,得到一个iterators并返回。

def format_name(s):
  return s[0].upper()+s[1:].lower()  #将列表的每个元素首字母大写,其他小写
print(list(map(format_name, ['adam', 'LISA', 'barT'])))
#输出:['Adam', 'Lisa', 'Bart']

filter()根据判断函数f的结果自动过滤掉不符合条件的元素,以iterators返回剩下的元素

def is_odd(x):
  return x % 2 == 1 # 过滤函数,x为奇返回True
f_res = filter(is_odd, [1, 4, 6, 7, 9, 12, 17])
print(list(f_res))  # 输出过滤后的结果list:1 7 9 17

sorted()函数用于对可迭代的对象进行排序,参数key=指定排序的关键字,这里可以借助functools.cmp_to_keys()将比较方法映射为自定义的方法。例如实现了降序排列,比较函数cmp返回值 -1 代表a 应该排在 b 的前面,如果a排在b 的后面返回 1。如果 a、b相等返回 0。

import functools
def cmp(a, b):
  if b < a:
    return -1
  if a < b:
    return 1
  return 0
a = [1, 2, 5, 4]
print(sorted(a, key=functools.cmp_to_key(cmp)))

2、匿名函数和闭包

有时函数简单到只有一个表达式时,为了简化代码可以使用匿名函数来代替,匿名函数一般形式为lambda 参数:返回表达式,例如lambda x:x*x,就是传入x参数并返回x的平方。例如在使用map()函数时需要传入一个函数用于list的元素,此时可以使用匿名函数作为参数

lst = [1, 2, 3, 4, 5, 6, 7, 8, 9]
res = map(lambda x: x * x, lst)  # 将匿名函数作用于lst
print(list(res))

函数的闭包(Closure)是指内层函数引用了外层函数的变量,然后将内层函数像变量一样返回的情况。例如函数calc_prod()接收一个list,在其内部定义一个函数multiply,计算list元素的乘积并将multiply返回。用f接收calc_prod()的返回函数,并在之后调用该函数

def calc_prod(lst):
  def multiply():
    res=1
    for i in lst:
      res=res*i
    return res
  return multiply  # 将函数返回
f = calc_prod([1, 2, 3, 4])  # 接收返回函数
print(f())  # 调用返回函数

注意在函数闭包时要确保引用的局部变量在函数返回后不能变。例如下面的例子,当count()函数返回3个函数时,由于f1、f2、f3并没有被调用,所以并未计算 i*i。当 f1 被调用时,这3个函数所引用的变量 i 的值已经变成了3,所以此时使用的变量i的值已经发生了改变,三个函数的输出都是9。

def count():
  fs = []
  for i in range(1, 4):
    def f():
      print(i)  # 函数f1()调用时i已经变为3
      return i*i
    fs.append(f)
  return fs
f1, f2, f3 = count()
print(f1())      # 输出9而不是1

3、函数装饰器

函数装饰器是指在原有函数的基础上对函数作修改和装饰操作。其基本思想是,既然函数可以像变量一样作为参数传入并且返回,那么我们可以将原来的函数传入装饰器函数,然后增加我们需要的操作,之后在将原函数返回出来。

例如下面定义了一个装饰器log用于打印函数名称,原函数作为参数f传入。在装饰器中定义新的函数fn,其中参数列*args和**kw代表自适应参数个数,防止不同参数个数的函数在使用装饰器时不匹配。在新函数fn中输出原函数的名称,之后将原函数原封不动地调用一遍并返回出去。最后返回新函数。

在使用装饰器时,只需要在函数的定义前加一行@装饰器名

def log(f): # 定义装饰器log
  def fn(*args, **kw): # 定义新函数
    print('函数名: ' + f.__name__)  # 打印函数名
    return f(*args, **kw) # 在新函数中调用原函数并返回结果
  return fn # 返回新函数
@log # 为函数add添加装饰器
def add(x, y):
  return x + y
print(add(1, 2))

如果希望给装饰器传入一个参数,则需要定义三重嵌套的函数,在最外层增加一层函数用于接收参数。例如希望在打印函数名之前输出传入的参数“DEBUG”

def log(prefix):
  def log_decorator(f):
    def wrapper(*args, **kw):
      print '[%s] %s()...' % (prefix, f.__name__)
      return f(*args, **kw)
    return wrapper
  return log_decorator
@log('DEBUG')  # 为装饰器传入参数
def test():
  pass
test()

由于装饰器实际上是创建了新的函数fn并替代了原函数,所以原函数的相关信息例如函数名会被覆盖,可以用@functools.wraps(f)来复制原函数的信息以保留下来。

import functools
def log(f):
  @functools.wraps(f)
  def fn(*args, **kw):
    print 'call...'
    return f(*args, **kw)
  return fn

偏函数可以为函数填上一个固定的参数值,从而生成一个新的函数。例如原函数add需要两个参数x、y,通过指定y=1得到偏函数add1,这个函数只需要输入一个参数x,从而计算x+1的值。

import functools
def add(x, y):
  return x + y
add1 = functools.partial(add, y=1)
print(add2(3))  # 输出结果为4

关于Python相关内容感兴趣的读者可查看本站专题:《Python函数使用技巧总结》、《Python面向对象程序设计入门与进阶教程》、《Python数据结构与算法教程》、《Python字符串操作技巧汇总》、《Python编码操作技巧总结》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python函数式编程指南(四):生成器详解

    4. 生成器(generator) 4.1. 生成器简介 首先请确信,生成器就是一种迭代器.生成器拥有next方法并且行为与迭代器完全相同,这意味着生成器也可以用于Python的for循环中.另外,对于生成器的特殊语法支持使得编写一个生成器比自定义一个常规的迭代器要简单不少,所以生成器也是最常用到的特性之一. 从Python 2.5开始,[PEP 342:通过增强生成器实现协同程序]的实现为生成器加入了更多的特性,这意味着生成器还可以完成更多的工作.这部分我们会在稍后的部分介绍. 4.2. 生成

  • Python函数式编程指南:对生成器全面讲解

    生成器是迭代器,同时也并不仅仅是迭代器,不过迭代器之外的用途实在是不多,所以我们可以大声地说:生成器提供了非常方便的自定义迭代器的途径. 这是函数式编程指南的最后一篇,似乎拖了一个星期才写好,嗯-- 1. 生成器(generator) 1.1. 生成器简介 首先请确信,生成器就是一种迭代器.生成器拥有next方法并且行为与迭代器完全相同,这意味着生成器也可以用于Python的for循环中.另外,对于生成器的特殊语法支持使得编写一个生成器比自定义一个常规的迭代器要简单不少,所以生成器也是最常用到的

  • Python中的函数式编程:不可变的数据结构

    让我们首先考虑正方形和长方形.如果我们认为在接口方面,忽略了实现细节,方块是否是矩形的子类型? 子类型的定义取决于Liskov代换原理.为了成为一个子类型,它必须能够完成超级类型所做的一切. 如何定义矩形的接口? zope.interface import Interface class IRectangleInterface: get_length: """Squares can do that""" get_width: "&quo

  • Python函数式编程指南(二):从函数开始

    2. 从函数开始 2.1. 定义一个函数 如下定义了一个求和函数: 复制代码 代码如下: def add(x, y):     return x + y 关于参数和返回值的语法细节可以参考其他文档,这里就略过了. 使用lambda可以定义简单的单行匿名函数.lambda的语法是: 复制代码 代码如下: lambda args: expression 参数(args)的语法与普通函数一样,同时表达式(expression)的值就是匿名函数调用的返回值:而lambda表达式返回这个匿名函数.如果我们

  • Python函数式编程指南(三):迭代器详解

    3. 迭代器 3.1. 迭代器(Iterator)概述 迭代器是访问集合内元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素都被访问一遍后结束. 迭代器不能回退,只能往前进行迭代.这并不是什么很大的缺点,因为人们几乎不需要在迭代途中进行回退操作. 迭代器也不是线程安全的,在多线程环境中对可变集合使用迭代器是一个危险的操作.但如果小心谨慎,或者干脆贯彻函数式思想坚持使用不可变的集合,那这也不是什么大问题. 对于原生支持随机访问的数据结构(如tuple.list),迭代器和经典fo

  • Python函数式编程指南(一):函数式编程概述

    1. 函数式编程概述 1.1. 什么是函数式编程? 函数式编程使用一系列的函数解决问题.函数仅接受输入并产生输出,不包含任何能影响产生输出的内部状态.任何情况下,使用相同的参数调用函数始终能产生同样的结果. 在一个函数式的程序中,输入的数据"流过"一系列的函数,每一个函数根据它的输入产生输出.函数式风格避免编写有"边界效应"(side effects)的函数:修改内部状态,或者是其他无法反应在输出上的变化.完全没有边界效应的函数被称为"纯函数式的"

  • Python3中lambda表达式与函数式编程讲解

    简单来说,编程中提到的 lambda 表达式,通常是在需要一个函数,但是又不想费神去命名一个函数的场合下使用,也就是指匿名函数.其一般有如下几种使用方式: 1.lambda的一般形式是关键字lambda后面跟一个或多个参数,紧跟一个冒号,以后是一个表达式.lambda是一个表达式而不是一个语句.它能够出现在Python语法不允许def出现的地方.作为表达式,lambda返回一个值(即一个新的函数).lambda用来编写简单的函数,而def用来处理更强大的任务.例如: f = lambda x,y

  • 详解Python函数式编程—高阶函数

    函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用.而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的. 函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数! Python对函数式编程提供部分支持.由于Python允许使用变量,因此,Python不是纯函数式编程语言. 高阶函数 变量

  • Python装饰器的函数式编程详解

    Python的装饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西.虽然好像,他们要干的事都很相似--都是想要对一个已有的模块做一些"修饰工作",所谓修饰工作就是想给现有的模块加上一些小装饰(一些小功能,这些小功能可能好多模块都会用到),但又不让这个小装饰(小功能)侵入到原有的模块中的代码里去.但是OO的Decorator简直就是一场恶梦,不信你就去看看wikipedia上的词条

  • python函数式编程学习之yield表达式形式详解

    前言 yield的英文单词意思是生产,刚接触Python的时候感到非常困惑,一直没弄明白yield的用法.最近又重新学习了下,所以整理了下面这篇文章,供自己和大家学习参考,下面话不多说了,来一起看看详细的介绍吧. 先来看一个例子 def foo(): print("starting...") while True: res = yield print("res:",res) g = foo() next(g) 在上面的例子里,因为foo函数中有yield关键字,所以

随机推荐