Tensorflow 实现分批量读取数据

之前的博客里使用tf读取数据都是每次fetch一条记录,实际上大部分时候需要fetch到一个batch的小批量数据,在tf中这一操作的明显变化就是tensor的rank发生了变化,我目前使用的人脸数据集是灰度图像,因此大小是92*112的,所以最开始fetch拿到的图像数据集经过reshape之后就是一个rank为2的tensor,大小是92*112的(如果考虑通道,也可以reshape为rank为3的,即92*112*1)。

如果加入batch,比如batch大小为5,那么拿到的tensor的rank就变成了3,大小为5*92*112。

下面规则化的写一下读取数据的一般流程,按照官网的实例,一般把读取数据拆分成两个大部分,一个是函数专门负责读取数据和解码数据,一个函数则负责生产batch。

import tensorflow as tf

def read_data(fileNameQue):

 reader = tf.TFRecordReader()
 key, value = reader.read(fileNameQue)
 features = tf.parse_single_example(value, features={'label': tf.FixedLenFeature([], tf.int64),
              'img': tf.FixedLenFeature([], tf.string),})
 img = tf.decode_raw(features["img"], tf.uint8)
 img = tf.reshape(img, [92,112]) # 恢复图像原始大小
 label = tf.cast(features["label"], tf.int32)

 return img, label

def batch_input(filename, batchSize):

 fileNameQue = tf.train.string_input_producer([filename], shuffle=True)
 img, label = read_data(fileNameQue) # fetch图像和label
 min_after_dequeue = 1000
 capacity = min_after_dequeue+3*batchSize
 # 预取图像和label并随机打乱,组成batch,此时tensor rank发生了变化,多了一个batch大小的维度
 exampleBatch,labelBatch = tf.train.shuffle_batch([img, label],batch_size=batchSize, capacity=capacity,
              min_after_dequeue=min_after_dequeue)
 return exampleBatch,labelBatch

if __name__ == "__main__":

 init = tf.initialize_all_variables()
 exampleBatch, labelBatch = batch_input("./data/faceTF.tfrecords", batchSize=10)

 with tf.Session() as sess:

  sess.run(init)
  coord = tf.train.Coordinator()
  threads = tf.train.start_queue_runners(coord=coord)

  for i in range(100):
   example, label = sess.run([exampleBatch, labelBatch])
   print(example.shape)

  coord.request_stop()
  coord.join(threads)

读取数据和解码数据与之前基本相同,针对不同格式数据集使用不同阅读器和解码器即可,后面是产生batch,核心是tf.train.shuffle_batch这个函数,它相当于一个蓄水池的功能,第一个参数代表蓄水池的入水口,也就是逐个读取到的记录,batch_size自然就是batch的大小了,capacity是蓄水池的容量,表示能容纳多少个样本,min_after_dequeue是指出队操作后还可以供随机采样出批量数据的样本池大小,显然,capacity要大于min_after_dequeue,官网推荐:min_after_dequeue + (num_threads + a small safety margin) * batch_size,还有一个参数就是num_threads,表示所用线程数目。

min_after_dequeue这个值越大,随机采样的效果越好,但是消耗的内存也越大。

以上这篇Tensorflow 实现分批量读取数据就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Tensorflow中使用tfrecord方式读取数据的方法

    前言 本博客默认读者对神经网络与Tensorflow有一定了解,对其中的一些术语不再做具体解释.并且本博客主要以图片数据为例进行介绍,如有错误,敬请斧正. 使用Tensorflow训练神经网络时,我们可以用多种方式来读取自己的数据.如果数据集比较小,而且内存足够大,可以选择直接将所有数据读进内存,然后每次取一个batch的数据出来.如果数据较多,可以每次直接从硬盘中进行读取,不过这种方式的读取效率就比较低了.此篇博客就主要讲一下Tensorflow官方推荐的一种较为高效的数据读取方式--tfre

  • 详解Tensorflow数据读取有三种方式(next_batch)

    Tensorflow数据读取有三种方式: Preloaded data: 预加载数据 Feeding: Python产生数据,再把数据喂给后端. Reading from file: 从文件中直接读取 这三种有读取方式有什么区别呢? 我们首先要知道TensorFlow(TF)是怎么样工作的. TF的核心是用C++写的,这样的好处是运行快,缺点是调用不灵活.而Python恰好相反,所以结合两种语言的优势.涉及计算的核心算子和运行框架是用C++写的,并提供API给Python.Python调用这些A

  • Tensorflow 实现分批量读取数据

    之前的博客里使用tf读取数据都是每次fetch一条记录,实际上大部分时候需要fetch到一个batch的小批量数据,在tf中这一操作的明显变化就是tensor的rank发生了变化,我目前使用的人脸数据集是灰度图像,因此大小是92*112的,所以最开始fetch拿到的图像数据集经过reshape之后就是一个rank为2的tensor,大小是92*112的(如果考虑通道,也可以reshape为rank为3的,即92*112*1). 如果加入batch,比如batch大小为5,那么拿到的tensor的

  • Tensorflow分批量读取数据教程

    之前的博客里使用tf读取数据都是每次fetch一条记录,实际上大部分时候需要fetch到一个batch的小批量数据,在tf中这一操作的明显变化就是tensor的rank发生了变化,我目前使用的人脸数据集是灰度图像,因此大小是92*112的,所以最开始fetch拿到的图像数据集经过reshape之后就是一个rank为2的tensor,大小是92*112的(如果考虑通道,也可以reshape为rank为3的,即92*112*1).如果加入batch,比如batch大小为5,那么拿到的tensor的r

  • Tensorflow中批量读取数据的案列分析及TFRecord文件的打包与读取

    单一数据读取方式: 第一种:slice_input_producer() # 返回值可以直接通过 Session.run([images, labels])查看,且第一个参数必须放在列表中,如[...] [images, labels] = tf.train.slice_input_producer([images, labels], num_epochs=None, shuffle=True) 第二种:string_input_producer() # 需要定义文件读取器,然后通过读取器中的

  • tensorflow使用range_input_producer多线程读取数据实例

    先放关键代码: i = tf.train.range_input_producer(NUM_EXPOCHES, num_epochs=1, shuffle=False).dequeue() inputs = tf.slice(array, [i * BATCH_SIZE], [BATCH_SIZE]) 原理解析: 第一行会产生一个队列,队列包含0到NUM_EXPOCHES-1的元素,如果num_epochs有指定,则每个元素只产生num_epochs次,否则循环产生.shuffle指定是否打乱顺

  • 利用Tensorflow的队列多线程读取数据方式

    在tensorflow中,有三种方式输入数据 1. 利用feed_dict送入numpy数组 2. 利用队列从文件中直接读取数据 3. 预加载数据 其中第一种方式很常用,在tensorflow的MNIST训练源码中可以看到,通过feed_dict={},可以将任意数据送入tensor中. 第二种方式相比于第一种,速度更快,可以利用多线程的优势把数据送入队列,再以batch的方式出队,并且在这个过程中可以很方便地对图像进行随机裁剪.翻转.改变对比度等预处理,同时可以选择是否对数据随机打乱,可以说是

  • tensorflow tf.train.batch之数据批量读取方式

    在进行大量数据训练神经网络的时候,可能需要批量读取数据.于是参考了这篇文章的代码,结果发现数据一直批量循环输出,不会在数据的末尾自动停止. 然后发现这篇博文说slice_input_producer()这个函数有一个形参num_epochs,通过设置它的值就可以控制全部数据循环输出几次. 于是我设置之后出现以下的报错: tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninit

  • TensorFlow高效读取数据的方法示例

    概述 最新上传的mcnn中有完整的数据读写示例,可以参考. 关于Tensorflow读取数据,官网给出了三种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据. 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). 对于数据量较小而言,可能一般选择直接将数据加载进内存,然后再分batch输入网络进行训练(t

  • tensorflow如何批量读取图片

    本文实例为大家分享了tensorflow如何批量读取图片的具体代码,供大家参考,具体内容如下 代码: import tensorflow as tf import os def picread(filelist): """ 读取狗的图片并转换成张量 :param filelist: 文件路f径+名字的列表 :return: 每张图片的张量 """ # 1.构造文件的队列 file_queue = tf.train.string_input_pro

  • tensorflow入门:TFRecordDataset变长数据的batch读取详解

    在上一篇文章tensorflow入门:tfrecord 和tf.data.TFRecordDataset的使用里,讲到了使用如何使用tf.data.TFRecordDatase来对tfrecord文件进行batch读取,即使用dataset的batch方法进行:但如果每条数据的长度不一样(常见于语音.视频.NLP等领域),则不能直接用batch方法获取数据,这时则有两个解决办法: 1.在把数据写入tfrecord时,先把数据pad到统一的长度再写入tfrecord:这个方法的问题在于:若是有大量

随机推荐