python 如何对logging日志封装

作者:做梦的人(小姐姐)
出处:https://www.cnblogs.com/chongyou/

因为最近在做平台,发现有同事,使用django封装了日志模块,看样子很简单,准备自己单独做了一个日志封装模板,对于python不熟练的我,封装部分参考了多个博主的内容,形成自己的日志模块,内容如下:

封装部分

创建一个logutil2的py文件

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author: zhangjun
# @Date  : 2018/7/26 9:20
# @Desc  : Description
 
import logging
import logging.handlers
import os
import time
 
class logs(object):
    def __init__(self):
        self.logger = logging.getLogger("")
        # 设置输出的等级
        LEVELS = {'NOSET': logging.NOTSET,
                  'DEBUG': logging.DEBUG,
                  'INFO': logging.INFO,
                  'WARNING': logging.WARNING,
                  'ERROR': logging.ERROR,
                  'CRITICAL': logging.CRITICAL}
        # 创建文件目录
        logs_dir="logs2"
        if os.path.exists(logs_dir) and os.path.isdir(logs_dir):
            pass
        else:
            os.mkdir(logs_dir)
        # 修改log保存位置
        timestamp=time.strftime("%Y-%m-%d",time.localtime())
        logfilename='%s.txt' % timestamp
        logfilepath=os.path.join(logs_dir,logfilename)
        rotatingFileHandler = logging.handlers.RotatingFileHandler(filename =logfilepath,
                                                                   maxBytes = 1024 * 1024 * 50,
                                                                   backupCount = 5)
        # 设置输出格式
        formatter = logging.Formatter('[%(asctime)s] [%(levelname)s] %(message)s', '%Y-%m-%d %H:%M:%S')
        rotatingFileHandler.setFormatter(formatter)
        # 控制台句柄
        console = logging.StreamHandler()
        console.setLevel(logging.NOTSET)
        console.setFormatter(formatter)
        # 添加内容到日志句柄中
        self.logger.addHandler(rotatingFileHandler)
        self.logger.addHandler(console)
        self.logger.setLevel(logging.NOTSET)
 
    def info(self, message):
        self.logger.info(message)
 
    def debug(self, message):
        self.logger.debug(message)
 
    def warning(self, message):
        self.logger.warning(message)
 
    def error(self, message):
        self.logger.error(message)

2.调用模块

创建另外一个py文件

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author: zhangjun
# @Date  : 2018/7/26 9:21
# @Desc  : Description
import logging
logger = logging.getLogger(__name__)
import logutil2
 
if __name__ == '__main__':
    logger=logutil2.logs()
    logger.info("this is info")
    logger.debug("this is debug")
    logger.error("this is error")
    logger.warning("this is warning")

结果展示:

1.控制台输出

2.日志文件展示

创建目录

日志文件的写入

以上就是python 如何对logging日志封装的详细内容,更多关于python logging日志封装的资料请关注我们其它相关文章!

(0)

相关推荐

  • python logging 日志的级别调整方式

    默认级别:warning import logging logging.debug('debug message') logging.info('info message') logging.warn('warn message') logging.error('error message') logging.critical('critical message') 输出: WARNING:root:warn message ERROR:root:error message CRITICAL:r

  • python3 logging日志封装实例

    一个完整的程序离不开日志,无论是开发阶段,还是测试阶段,亦或程序运行阶段,都可以通过日志查看程序的运行情况,或是定位问题. 下面是对 python3 的日志库 logging 进行了封装,对于大部分的需求应该是能满足的.(如果有不满足的地方,欢迎在下方留言) 程序结构: |--logger.py | |--singleton.py | |--demo.py | |--log | | | 2018-10-12.log logger.py import os import sys import ti

  • Python+logging输出到屏幕将log日志写入文件

    日志 日志是跟踪软件运行时所发生的事件的一种方法.软件开发者在代码中调用日志函数,表明发生了特定的事件.事件由描述性消息描述,该描述性消息可以可选地包含可变数据(即,对于事件的每次出现都潜在地不同的数据).事件还具有开发者归因于事件的重要性:重要性也可以称为级别或严重性. logging提供了一组便利的函数,用来做简单的日志.它们是 debug(). info(). warning(). error() 和 critical(). logging函数根据它们用来跟踪的事件的级别或严重程度来命名.

  • Python日志logging模块功能与用法详解

    本文实例讲述了Python日志logging模块功能与用法.分享给大家供大家参考,具体如下: 本文内容: logging模块的介绍 logging模块的基础使用 logging模块的扩展使用 logging中的Filter 使用配置文件配置logging和logger 小技巧 想要了解更多?不如看看官方文档. 首发日期:2018-07-05 logging模块的介绍: 它是一个python标准库,所以它的通用性很高,所有的python模块都可以与它合作参与日志记录. 日志级别: 基本 中文意义

  • Python中logging日志的四个等级和使用

    1. logging日志的介绍 在现实生活中,记录日志非常重要,比如:银行转账时会有转账记录:飞机飞行过程中,会有个黑盒子(飞行数据记录器)记录着飞机的飞行过程,那在咱们python程序中想要记录程序在运行时所产生的日志信息,怎么做呢? 可以使用 logging 这个包来完成 记录程序日志信息的目的是: 1. 可以很方便的了解程序的运行情况 2. 可以分析用户的操作行为.喜好等信息 3. 方便开发人员检查bug 2. logging日志级别介绍 日志等级可以分为5个,从低到高分别是: 1. DE

  • python3中的logging记录日志实现过程及封装成类的操作

    作用: 主要记录信息,便于定位查看问题. python logging模块官网: https://docs.python.org/zh-cn/3.7/library/logging.html#formatter-objects 三种定位问题方法: print debug调试:代码写好后,就不需要再进行调试了,所以引入了logger logging.debug() – 一般在测试环境中用 logger:当生产环境中有问题时,可以查看logger定位问题 步骤: 1.初始化日志 收集器 2.设置日志

  • python logging 重复写日志问题解决办法详解

    python logging 重复写日志问题 用Python的logging模块记录日志时,遇到了重复记录日志的问题,第一条记录写一次,第二条记录写两次,第三条记录写三次...很头疼,这样记日志可不行.网上搜索到了原因与解决方案: 原因:没有移除handler 解决:在日志记录完之后removeHandler 修改前示例代码: import logging def log(message): logger = logging.getLogger('testlog') streamhandler

  • 解决Python logging模块无法正常输出日志的问题

    废话少说,先上代码 File:logger.conf [formatters] keys=default [formatter_default] format=%(asctime)s - %(name)s - %(levelname)s - %(message)s class=logging.Formatter [handlers] keys=console, error_file [handler_console] class=logging.StreamHandler formatter=d

  • Python基于yaml文件配置logging日志过程解析

    一.使用logging.config.dictConfig()函数读取配置信息,参数是字典类型 with open(file="./loggingconfigyaml.yaml", mode='r', encoding="utf-8")as file: logging_yaml = yaml.load(stream=file, Loader=yaml.FullLoader) # print(logging_yaml) # 配置logging日志:主要从文件中读取ha

  • python 日志 logging模块详细解析

    Python 中的 logging 模块可以让你跟踪代码运行时的事件,当程序崩溃时可以查看日志并且发现是什么引发了错误.Log 信息有内置的层级--调试(debugging).信息(informational).警告(warnings).错误(error)和严重错误(critical).你也可以在 logging 中包含 traceback 信息.不管是小项目还是大项目,都推荐在 Python 程序中使用 logging.本文给大家介绍python 日志 logging模块 介绍. 1 基本使用

  • 详解python logging日志传输

    1.生成日志并通过http传输出去(通过HTTPHandler方式): #生成并发送日志 import logging from logging.handlers import HTTPHandler import logging.config def save(): logger = logging.getLogger(__name__) # 生成一个log实例,如果括号为空则返回root logger hh = HTTPHandler(host='127.0.0.1:5000', url='

  • Python logging日志模块 配置文件方式

    在一些微服务或web服务中我们难免需要日志功能,用来记录一些用户的登录记录,操作记录,以及一些程序的崩溃定位,执行访问定位等等; Python内置 非常强大的日志模块 ==> logging 今天给大家分享一下以配置文件形式进行配置log日志 ; Centos6.7 Python3.6 logging0.5.1.2 logging模块有三个比较重要的功能组件: 1.loggers 配置文件可定义一些输出日志的appname 2.handler 过滤器,比如设置日志的分隔大小,输出位置,日志文件创

  • Python中logging日志记录到文件及自动分割的操作代码

    日志作为项目开发和运行中必备组件,python提供了内置的logging模块来完成这个工作:借助 TimedRotatingFileHandler 可以按日期自动分割日志,自动保留日志文件数量等,下面是对日志的一个简单封装和测试. import logging import os from logging import handlers class Logger(object): # 日志级别关系映射 level_relations = { 'debug': logging.DEBUG, 'in

随机推荐