C++写时拷贝实现原理及实例解析

一、什么是写时拷贝

写入时复制是一种计算机程序设计领域的优化策略。其核心思想是,如果有多个调用者同时请求相同资源(如内存或磁盘上的数据存储),他们会共同获取相同的指针指向相同的资源,直到某个调用者试图修改资源的内容时,系统才会真正复制一份专用副本(private copy)给该调用者,而其他调用者所见到的最初的资源仍然保持不变。
这个过程对其他的调用者是透明的(transparently)。

此作法的主要优点是如果调用者没有修改该资源,就不会有副本被建立,因此多个调用者只是读取操作是可以共享同一份资源。

写时拷贝技术是一种很重要的优化手段,核心是懒惰处理实体资源请求,在多个实体资源之间只是共享资源,起初是并不真正实现资源拷贝,

只有当实体有需要对资源进行修改时才真正为实体分配私有资源。但写时拷贝技术技术也有它的优点和缺点:

1、写时拷贝技术可以减少分配和复制大量资源时带来的瞬间延时,但实际上是将这种延时附加到了后续的操作之中。

2、写时拷贝技术可以减少不必要的资源分配。比如fork进程时,并不是所有的页面都需要复制,父进程的代码段和只读数据段都不被允许修改,所以无需复制。

二、写时拷贝技术的应用

1、虚拟内存管理中的写时复制

一般把这种被共享访问的页面标记为只读。当一个task试图向内存中写入数据时,内存管理单元(MMU)抛出一个异常,内核处理该异常时为该task分配一份物理内存并复制数据到此内存,

重新向MMU发出执行该task的写操作。

比如Linux的fork()使用写时拷贝页来实现新进程的创建,它是一种可推迟甚至避免数据拷贝的技术,开始时内核并不会复制整个地址空间,而是让父子进程共享地址空间,只有在写时才复制地址空间,使得父子进程都拥有独立的地址空间,即资源的复制是在只有需要写入时才会发生。在此之前都是以读的方式去和父进程共享资源,这样,在页根本不会被写入的场景下,fork()立即执行exec(),无需对地址空间进行复制,fork()的实际开销就是复制父进程的一个页表和为子进程创建一个进程描述符,也就是说只有当进程空间中各段的内存内容发生变化时,父进程才将其内容复制一份传给子进程,大大提高了效率。

2、数据存储中的写时复制

  Linux等的文件管理系统使用了写时复制策略。

  举个例子,比如我们有个程序要写文件,不断地根据网络传来的数据写,如果每一次fwrite或是fprintf都要进行一个磁盘的I/O操作的话,都简直就是性能上巨大的损失,

  因此通常的做法是,每次写文件操作都写在特定大小的一块内存中(磁盘缓存),只有当我们关闭文件时,才写到磁盘上(这就是为什么如果文件不关闭,所写的东西会丢失的原因)

3、软件应用中的写时复制

在我们经常使用的STL标准模板库中的string类,也是一个具有写时才拷贝技术的类。为了提高性能,STL中的许多类都采用了写时拷贝技术。但是在C++11标准中为了提高并行性取消了这一策略

class String
{
public:
  //构造函数(分存内存)
  String(char* tmp)
  {
    _Len = strlen(tmp);
    _Ptr = new char[_Len + 1 + 1];
    strcpy(_Ptr, tmp);
    // 在数组尾部设置引用计数
    _Ptr[_Len + 1] = 0;
  }
  //析构函数
  ~String()
  {
    //引用计数减一
    _Ptr[_Len + 1]--;
    // 引用计数为0时,释放内存
    if (_Ptr[_Len + 1] == 0)
    {
      delete[] _Ptr;
    }
  }

  //拷贝构造(共享内存)
  String(string& str)
  {
    if (this->_Ptr != str)
    {
      //共享内存,.data()返回的是将string的类型转换成char类型的指针
      const char *p = str.c_str();
      char* pp;
      strcmp(pp, p);
      this->_Ptr = pp;
      this->_Len = str.size();
      this->_Ptr[_Len + 1] ++; //引用计数加一

    }
  }

  //对[]符进行重载,对字符串进行操作的时候,开始写时复制
  char& operator[](unsigned int idx)
  {
    if (idx > _Len || _Ptr == 0)
    {
      static char nullchar = 0;
      return nullchar;
    }
    //引用计数减一
    _Ptr[_Len + 1]--; 

    char* tmp = new char[_Len + 1 + 1];

    strncpy(tmp, _Ptr, _Len + 1);

    _Ptr = tmp;
    // 设置新的共享内存的引用计数
    _Ptr[_Len + 1] = 0;
    return _Ptr[idx];
  }

private:
  int _Len;
  char* _Ptr;
};

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 详解C++中构造函数,拷贝构造函数和赋值函数的区别和实现

    C++中一般创建对象,拷贝或赋值的方式有构造函数,拷贝构造函数,赋值函数这三种方法.下面就详细比较下三者之间的区别以及它们的具体实现 1.构造函数 构造函数是一种特殊的类成员函数,是当创建一个类的对象时,它被调用来对类的数据成员进行初始化和分配内存.(构造函数的命名必须和类名完全相同) 首先说一下一个C++的空类,编译器会加入哪些默认的成员函数 默认构造函数和拷贝构造函数 析构函数 赋值函数(赋值运算符) 取值函数 **即使程序没定义任何成员,编译器也会插入以上的函数! 注意:构造函数可以被重载

  • 深入理解C/C++中的写时拷贝

    写时拷贝 何为写时拷贝? 前面我说过深拷贝浅拷贝,今天我们来探究一下写时拷贝.深拷贝是补充了浅拷贝的不足,写时拷贝其实也就是补充一点深拷贝的不足.其实写时拷贝的意思就是: 当你读取到这个空间的时候,并不会开辟出一个一模一样的空间出来给你,当你真正需要拷贝的时候,那么他就会开辟出空间给你.也就是拖延版的深拷贝. 写时拷贝技术是通过"引用计数"实现的,在分配空间的时候多分配4个字节,用来记录有多少个指针指向块空间,当有新的指针指向这块空间时,引用计数加一,当要释放这块空间时,引用计数减一(

  • 详解C++ 编写String 的构造函数、拷贝构造函数、析构函数和赋值函数

    详解C++ 编写String 的构造函数.拷贝构造函数.析构函数和赋值函数 编写类String 的构造函数.析构函数和赋值函数,已知类String 的原型为: class String { public: String(const char *str = NULL); // 普通构造函数 String(const String &other); // 拷贝构造函数 ~ String(void); // 析构函数 String & operate =(const String &ot

  • C++基础教程之指针拷贝详解

    C++基础教程之指针拷贝详解 指针是编程人员的梦魇,对C语言的开发者是如此,对C++的开发者也是如此.特别是在C++中,如果不注意处理类中的指针,非常容易出问题.如果朋友们不相信可以看看下面的代码: class data { int* value; public: data(int num){ if(num > 0) value = (int*)malloc(sizeof(int)* num); } ~data(){ if(value) free(value); } }; void proces

  • c++中深浅拷贝以及写时拷贝的实现示例代码

    本文主要给大家介绍了关于c++中深浅拷贝及写时拷贝实现的相关内容,分享出来供大家参考学习,下面话不多说,来一起看看详细的介绍: 一:浅拷贝&深拷贝 浅拷贝:在拷贝构造的时候,直接将原内容的地址交给要拷贝的类,两个类共同指向一片空间.但是存在很大的缺陷:①一旦对s2进行操作,s1的内容也会改变:②析构时先析构s2,再析构s1,但是由于s1,s2指向同一片空间,会导致一片空间的二次析构导致出错. 深拷贝:通过开辟和源空间大小相同的空间并将内容拷贝下来再进行操作.不论是否对s2进行操作,都会拷贝一片相

  • C++ 中类的拷贝、赋值、销毁的实例详解

    C++ 中类的拷贝.赋值.销毁的实例详解 本篇文章我们一共讲解一下几个知识点: 类的拷贝构造函数. 类的拷贝赋值运算符. 类的析构. 好了one by one 如果我们没有定义类的拷贝构造函数的话,那么编译器会为我们合成默认拷贝构造函数----合成拷贝构造函数. 和成拷贝构造函数的操作是将其参数的各个成员拷贝到正在创建的对象中去,每个成员的类型决定了他是如何被拷贝的:对类类型的成员,会使用其拷贝构造函数,内置类型的成员则是直接拷贝,虽然我们不能直接拷贝一个数组,但是合成拷贝构造函数会逐个的拷贝一

  • 详解C++中String类模拟实现以及深拷贝浅拷贝

    详解C++中String类模拟实现以及深拷贝浅拷贝 在C语言中/C++中,字符串是一个应用很广泛的类型,也是很基础的类型,C语言并没有直接处理字符串的操作而是采用字符指针和字符串数组进行操作,而在C++中标准库为我们封装了一个字符串的类供我们使用,使用需要#inlcude <string>头文件.我们也可以自己模拟实现一个简单的String类. 在模拟实现String类的过程中,不可避免的会遇到深拷贝浅拷贝的问题,下面就深拷贝浅拷贝做一个简介.所谓深拷贝浅拷贝,简单来说就是浅拷贝只是简单的将值

  • C/C++ 浅拷贝和深拷贝的实例详解

    C/C++ 浅拷贝和深拷贝的实例详解 深拷贝是指拷贝对象的具体内容,而内存地址是自主分配的,拷贝结束之后,两个对象虽然存的值是相同的,但是内存地址不一样,两个对象也互不影响,互不干涉. 浅拷贝就是对内存地址的复制,让目标对象指针和源对象指向同一片内存空间. 浅拷贝只是对对象的简单拷贝,让几个对象共用一片内存,当内存销毁的时候,指向这片内存的几个指针需要重新定义才可以使用,要不然会成为野指针. 在iOS开发中也会涉及到浅拷贝和深拷贝,简而言之: 浅拷贝:拷贝指针变量的值 深拷贝:拷贝指针所指向内存

  • C++写时拷贝实现原理及实例解析

    一.什么是写时拷贝 写入时复制是一种计算机程序设计领域的优化策略.其核心思想是,如果有多个调用者同时请求相同资源(如内存或磁盘上的数据存储),他们会共同获取相同的指针指向相同的资源,直到某个调用者试图修改资源的内容时,系统才会真正复制一份专用副本(private copy)给该调用者,而其他调用者所见到的最初的资源仍然保持不变. 这个过程对其他的调用者是透明的(transparently). 此作法的主要优点是如果调用者没有修改该资源,就不会有副本被建立,因此多个调用者只是读取操作是可以共享同一

  • String类的写时拷贝实例

    实例如下: #include<iostream> using namespace std; class String; ostream& operator<<(ostream &out, const String&s); //引用计数器类 class String_rep { friend class String; friend ostream& operator<<(ostream &out, const String&

  • C++的深浅拷贝和写时拷贝你了解吗

    目录 1.浅拷贝 2.深拷贝 3.引用计数+写时拷贝 总结 1.浅拷贝 浅拷贝:对于有申请空间的对象的类来说,是按照字节序依次拷贝过去的,并没有另外申请一块空间.因此,在调用析构函数的时候会造成同一块空间释放两次的情况,从而使程序崩溃. 如下实例: class string { public: string(const char* str) { //构造string类对象时,如果传递nullptr指针 //认为程序非法,此处断言下 assert(str); _str = new char[str

  • 详谈Linux写时拷贝技术(copy-on-write)必看篇

    COW技术初窥 在linux程序中,fork()会产生一个和父进程完全相同的子进程,但子进程在此后多会exec系统调用,出于效率考虑,linux中引入了"写时复制"技术,也就是只有进程空间的各段的内容要发生变化时,才将父进程的内容复制一份给子进程. 那么子进程的物理空间没有代码,怎么去取指令执行exec系统调用呢?? 在fork之后exec之前两个进程用的是相同的物理空间(内存区),子进程的代码段.数据段.堆栈都是指向父进程的物理空间,也就是说,两者的虚拟空间不同,其对应的物理空间是一

  • C++深浅拷贝和写时拷贝图文详解

    前言 之前我们在浅谈6个成员函数中有提到深浅拷贝的问题,现在再回首掏一把. 一.深浅拷贝哪家强? 先给出代码理一理 #define _CRT_SECURE_NO_WARNINGS 1 #include <iostream> #include<assert.h> using namespace std; class String { friend ostream& operator<<(ostream &out, const String &s);

  • Java原子变量类原理及实例解析

    这篇文章主要介绍了Java原子变量类原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.原子变量类简介 为何需要原子变量类 保证线程安全是 Java 并发编程必须要解决的重要问题.Java 从原子性.可见性.有序性这三大特性入手,确保多线程的数据一致性. 确保线程安全最常见的做法是利用锁机制(Lock.sychronized)来对共享数据做互斥同步,这样在同一个时刻,只有一个线程可以执行某个方法或者某个代码块,那么操作必然是原子性

  • java阻塞队列实现原理及实例解析

    这篇文章主要介绍了java阻塞队列实现原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 阻塞队列与普通队列的不同在于.当队列是空的时候,从队列中获取元素的操作将会被阻塞,或者当队列满时,往队列里面添加元素将会被阻塞.试图从空的阻塞队列中获取元素的线程将会被阻塞,直到其他的线程往空的队列插入新的元素.同样,试图往已满的阻塞队列中添加新元素的线程同样也会被阻塞,直到其他的线程使队列重新变得空闲起来,如从队列中移除一个或者多个元素,或者完

  • Java内存模型原子性原理及实例解析

    这篇文章主要介绍了Java内存模型原子性原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 本文就具体来讲讲JMM是如何保证共享变量访问的原子性的. 原子性问题 原子性是指:一个或多个操作,要么全部执行且在执行过程中不被任何因素打断,要么全部不执行. 下面就是一段会出现原子性问题的代码: public class AtomicProblem { private static Logger logger = LoggerFactory.

随机推荐