无惧面试,带你搞懂python 装饰器

写在之前

「装饰器」作为 Python 高级语言特性中的重要部分,是修改函数的一种超级便捷的方式,适当使用能够有效提高代码的可读性和可维护性,非常的便利灵活。

「装饰器」本质上就是一个函数,这个函数的特点是可以接受其它的函数当作它的参数,并将其替换成一个新的函数(即返回给另一个函数)。

可能现在这么看的话有点懵,为了深入理解「装饰器」的原理,我们首先先要搞明白「什么是函数对象」,「什么是嵌套函数」,「什么是闭包」。关于这三个问题我在很久以前的文章中已经写过了,你只需要点击下面的链接去看就好了,这也是面试中常问的知识哦:

https://www.jb51.net/article/158738.htm

装饰器

搞明白上面的三个问题,其实简单点来说就是告诉你:函数可以赋值给变量,函数可嵌套,函数对象可以作为另一个函数的参数。

首先我们来看一个例子,在这个例子中我们用到了前面列出来的所有知识:

def first(fun):
  def second():
    print('start')
    fun()
    print('end')
    print fun.__name__
  return second

def man():
  print('i am a man()')

f = first(man)
f()

上述代码的执行结果如下所示:

start
i am a man()
end
man

上面的程序中,这个就是 first 函数接收了 man 函数作为参数,并将 man 函数以一个新的函数进行替换。看到这你有没有发现,这个和我在文章刚开始时所说的「装饰器」的描述是一样的。既然这样的话,那我们就把上述的代码改造成符合 Python 装饰器的定义和用法的样子,具体如下所示:

def first(func):
  def second():
    print('start')
    func()
    print('end')
    print (func.__name__)
  return second

@first
def man():
  print('i am a man()')

man()

上面这段代码和之前的代码的作用一模一样。区别在于之前的代码直接“明目张胆”的使用 first 函数去封装 man 函数,而上面这个是用了「语法糖」来封装 man 函数。至于什么是语法糖,不用细去追究,你就知道是类似「@first」这种形式的东西就好了。

在上述代码中「@frist」在 man 函数的上面,表示对 man 函数使用 first 装饰器。「@」 是装饰器的语法,「first」是装饰器的名称。

下面我们再来看一个复杂点的例子,用这个例子我们来更好的理解一下「装饰器」的使用以及它作为 Python 语言高级特性被人津津乐道的部分:

def check_admin(username):
  if username != 'admin':
    raise Exception('This user do not have permission')

class Stack:
  def __init__(self):
    self.item = []

  def push(self,username,item):
    check_admin(username=username)
    self.item.append(item)

  def pop(self,username):
    check_admin(username=username)
    if not self.item:
      raise Exception('NO elem in stack')
    return self.item.pop()

上述实现了一个特殊的栈,特殊在多了检查当前用户是否为 admin 这步判断,如果当前用户不是 admin,则抛出异常。上面的代码中将检查当前用户的身份写成了一个独立的函数 check_admin,在 push 和 pop 中只需要调用这个函数即可。这种方式增强了代码的可读性,减少了代码冗余,希望大家在编程的时候可以具有这种意识。

下面我们来看看上述代码用装饰器来写成的效果:

def check_admin(func):
  def wrapper(*args, **kwargs):
    if kwargs.get('username') != 'admin':
      raise Exception('This user do not have permission')
    return func(*args, **kwargs)
  return wrapper

class Stack:
  def __init__(self):
    self.item = []

  @check_admin
  def push(self,username,item):
    self.item.append(item)

  @check_admin
  def pop(self,username):
    if not self.item:
      raise Exception('NO elem in stack')
    return self.item.pop()

对比一下使用「装饰器」和不使用装饰器的两种写法,乍一看,好像使用「装饰器」以后代码的行数更多了,但是你有没有发现代码看起来好像更容易理解了一些。在没有装饰器的时候,我们先看到的是 check_admin 这个函数,我们得先去想这个函数是干嘛的,然后看到的才是对栈的操作;而使用装饰器的时候,我们上来看到的就是对栈的操作语句,至于 check_admin 完全不会干扰到我们对当前函数的理解,所以使用了装饰器可读性更好了一些。

就和我在之前的文章中所讲的「生成器」那样,虽然 Python 的高级语言特性好用,但也不能乱用。装饰器的语法复杂,通过我们在上面缩写的装饰器就可以看出,它写完以后是很难调试的,并且使用「装饰器」的程序的速度会比不使用装饰器的程序更慢,所以还是要具体场景具体看待。

以上就是无惧面试,带你搞懂python 装饰器的详细内容,更多关于python 装饰器的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python多个装饰器的调用顺序实例解析

    一般情况下,在函数中可以使用一个装饰器,但是有时也会有两个或两个以上的装饰器.多个装饰器装饰的顺序是从里到外(就近原则),而调用的顺序是从外到里(就远原则) 样例: def func1(func): print(1) def inner1(*args, **kwargs): print(2) res = func(*args, **kwargs) print(3) return res print(4) return inner def func2(func): print(5) def inn

  • Python学习笔记之装饰器

    一. 什么是装饰器 知乎某大佬如是说:内裤可以用来遮羞,但是到了冬天它没法为我们防风御寒,聪明的人们发明了长裤,有了长裤后宝宝再也不冷了,装饰器就像我们这里说的长裤,在不影响内裤作用的前提下,给我们的身子提供了保暖的功效. 装饰器本质上是Python函数,可以为已存在的对象添加额外的功能,同时装饰器还可以抽离出与函数无关的重用代码.具体应用场景如:插入日志.性能测试.事务处理.缓存.权限校验等. 换言之 装饰器不能影响原函数的功能,装饰器是独立出来的函数.谁调用它,谁就可以使用它的功能. 二.举

  • Python如何解除一个装饰器

    问题 一个装饰器已经作用在一个函数上,你想撤销它,直接访问原始的未包装的那个函数. 解决方案 假设装饰器是通过 @wraps 来实现的,那么你可以通过访问 __wrapped__ 属性来访问原始函数: >>> @somedecorator >>> def add(x, y): ... return x + y ... >>> orig_add = add.__wrapped__ >>> orig_add(3, 4) 7 >>

  • Python带参数的装饰器运行原理解析

    关于装饰器的理解,特别像<盗梦空间>中的进入梦境和从梦境出来的过程,一层一层的深入梦境,然后又一层一层的返回,被带入梦境的是被装饰的函数,装饰器就是使人入梦的工具. 上代码: from functools import wraps def decorator_with_argument(argument=''): def outer(func): message = argument + func.__name__ @wraps(func) def inner(*args, **kwargs)

  • python GUI库图形界面开发之PyQt5信号与槽的高级使用技巧装饰器信号与槽详细使用方法与实例

    装饰器信号与槽 所谓装饰器信号与槽,就是通过装饰器的方法来定义信号与槽函数,具体的使用方法如下 @PyQt5.QtCore.pyqtSlot(参数) def on_发送者对象名称_发射信号名称(self,参数): pass 这种方法有效的前提是下面的函数已经执行: QMetaObject.connectSlotsByName(QObject) 在上面的代码中,'发送者对象名称'就是使用setObjectName函数设置的名称,因此自定义槽函数的命名规则也可以看做:on+使用setObjectNa

  • Python新手学习装饰器

    python函数式编程之装饰器 1.开放封闭原则 简单来说,就是对扩展开放,对修改封闭. 在面向对象的编程方式中,经常会定义各种函数.一个函数的使用分为定义阶段和使用阶段,一个函数定义完成以后,可能会在很多位置被调用.这意味着如果函数的定义阶段代码被修改,受到影响的地方就会有很多,此时很容易因为一个小地方的修改而影响整套系统的崩溃,所以对于现代程序开发行业来说,一套系统一旦上线,系统的源代码就一定不能够再改动了.然而一套系统上线以后,随着用户数量的不断增加,一定会为一套系统扩展添加新的功能. 此

  • Python类中的装饰器在当前类中的声明与调用详解

    我的Python环境:3.7 在Python类里声明一个装饰器,并在这个类里调用这个装饰器. 代码如下: class Test(): xx = False def __init__(self): pass def test(func): def wrapper(self, *args, **kwargs): print(self.xx) return func(self, *args, **kwargs) return wrapper @test def test_a(self,a,b): pr

  • Python装饰器实现方法及应用场景详解

    应用场景: 1.授权(Authorization) 装饰器能有助于检查某个人是否被授权去使用一个web应用的端点(endpoint).它们被大量使用于Flask和Django web框架中.这里是一个例子来使用基于装饰器的授权: from functools import wraps # 最新版python引用是 import functools def requires_auth(f): # f 就是我们需要装饰的函数,一看就是不带参数的装饰器 @wraps(f) # 新版python写法 @

  • 如何真正的了解python装饰器

    合理使用装饰器可以简化开发,并且使得代码更加清晰.下面我们分别介绍两种装饰器,不带参数的装饰器和带参数的装饰器. 一.不带参数的装饰器 我们用一个实际的例子来引入装饰器的概念,比如我们现在有一个方法A(),然后我们需要在方法A()执行之前在终端打印"function is running",这时候我们可以在方法A()的开始部分加上下面的代码: print("function is running") 但是如果我们不想修改方法A()的代码,也可以重新写一个方法deco

  • 无惧面试,带你搞懂python 装饰器

    写在之前 「装饰器」作为 Python 高级语言特性中的重要部分,是修改函数的一种超级便捷的方式,适当使用能够有效提高代码的可读性和可维护性,非常的便利灵活. 「装饰器」本质上就是一个函数,这个函数的特点是可以接受其它的函数当作它的参数,并将其替换成一个新的函数(即返回给另一个函数). 可能现在这么看的话有点懵,为了深入理解「装饰器」的原理,我们首先先要搞明白「什么是函数对象」,「什么是嵌套函数」,「什么是闭包」.关于这三个问题我在很久以前的文章中已经写过了,你只需要点击下面的链接去看就好了,这

  • 五分钟带你搞懂python 迭代器与生成器

    前言 大家周末好,今天给大家带来的是Python当中生成器和迭代器的使用. 我当初第一次学到迭代器和生成器的时候,并没有太在意,只是觉得这是一种新的获取数据的方法.对于获取数据的方法而言,我们会一种就足够了.但是在我后来Python的使用以及TensorFlow等学习使用当中,我发现很多地方都用到了迭代器和生成器,或者是直接使用,或者是借鉴了思路.今天就让我们仔细来看看,它们到底是怎么回事. 迭代器 我们先从迭代器开始入手,迭代器并不是Python独有的概念,在C++和Java当中都有itera

  • 一篇文章带你搞懂Python类的相关知识

    一.什么是类 类(class),作为代码的父亲,可以说它包裹了很多有趣的函数和方法以及变量,下面我们试着简单创建一个吧. 这样就算创建了我们的第一个类了.大家可以看到这里面有一个self,其实它指的就是类aa的实例.每个类中的函数只要你不是类函数或者静态函数你都得加上这个self,当然你也可以用其他的代替这个self,只不过这是python中的写法,就好比Java 中的this. 二.类的方法 1.静态方法,类方法,普通方法 类一般常用有三种方法,即为static method(静态方法),cl

  • 一文带你搞懂Python中的文件操作

    目录 一.文件的编码 二.文件的读取 2.1 open()打开函数 2.2 mode常用的三种基础访问模式 2.3 读操作相关方法 三.文件的写入 写操作快速入门 四.文件的追加 追加写入操作快速入门 五.文件操作综合案例 一.文件的编码 计算机中有许多可用编码: UTF-8 GBK Big5 等 UTF-8是目前全球通用的编码格式 除非有特殊需求,否则,一律以UTF-8格式进行文件编码即可. 二.文件的读取 2.1 open()打开函数 注意:此时的f是open函数的文件对象,对象是Pytho

  • 一文带你搞懂Python上下文管理器

    目录 一.什么是上下文管理器 二.如何实现上下文管理器 1. 通过类实现 1)_enter_ 2)_exit_ 2. 通过contextlib实现 总结 一.什么是上下文管理器 我们在处理文件的时候经常看到下面这样的代码,它即是上下文管理器: with open('test.txt', encoding='utf-8') as f: print(f.readlines()) 它的含义是打开当前目录下的test.txt文件并打印它里面的内容,与下面的代码效果是一样的: f = open('test

  • Python装饰器知识点补充

    首先回顾一下关于Python装饰器以及装饰器模式 补全 根据Java实现装饰器模式的,我们可以写下面一段代码: import logging def use_logging(func): logging.warn("%s is running" % func.__name__) return func def foo(): print('i am foo') foo = use_logging(foo) foo() # 调用 这个实现对于上篇文章中提到的Java使用装饰器.上面也是一个

  • 彻底搞懂 python 中文乱码问题(深入分析)

    前言 曾几何时 Python 中文乱码的问题困扰了我很多很多年,每次出现中文乱码都要去网上搜索答案,虽然解决了当时遇到的问题但下次出现乱码的时候又会懵逼,究其原因还是知其然不知其所以然.现在有的小伙伴为了躲避中文乱码的问题甚至代码中不使用中文,注释和提示都用英文,我曾经也这样干过,但这并不是解决问题,而是逃避问题,今天我们一起彻底解决 Python 中文乱码的问题. 基础知识ASCII 很久很久以前,有一群人,他们决定用8个可以开合的晶体管来组合成不同的状态,以表示世界上的万物.他们看到8个开关

  • 一篇文章搞懂Python反斜杠的相关问题

    大家在开发Python的过程中,一定会遇到很多反斜杠的问题,很多人被反斜杠的数量搞得头大. 首先我们写一段非常简单的Python代码,它的作用是把一个字段先转换为JSON格式的字符串,然后把这个字符串再转换为JSON格式的字符串: import json info = {'name': 'kingname', 'address': '杭州', 'salary': 99999} info_json = json.dumps(info) # 第一次转换以后,打印出来 print(info_json)

  • 一文搞懂Python Sklearn库使用

    目录 1.LabelEncoder 2.OneHotEncoder 3.sklearn.model_selection.train_test_split随机划分训练集和测试集 4.pipeline 5 perdict 直接返回预测值 6 sklearn.metrics中的评估方法 7 GridSearchCV 8 StandardScaler 9 PolynomialFeatures 4.10+款机器学习算法对比 4.1 生成数据 4.2 八款主流机器学习模型 4.3 树模型 - 随机森林 4.

  • 一文带你搞懂Numpy中的深拷贝和浅拷贝

    目录 1. 引言 2. 浅拷贝 2.1 问题引入 2.2 问题剖析 3. 深拷贝 3.1 举个栗子 3.2 探究原因 4. 技巧总结 4.1 判断是否指向同一内存 4.2 其他数据类型 5. 总结 1. 引言 深拷贝和浅拷贝是Python中重要的概念,本文重点介绍在NumPy中深拷贝和浅拷贝相关操作的定义和背后的原理. 闲话少说,我们直接开始吧! 2. 浅拷贝 2.1 问题引入 我们来举个栗子,如下所示我们有两个数组a和b,样例代码如下: import numpy as np a = np.ar

随机推荐