OpenCV基于ORB算法实现角点检测

本文实例为大家分享了OpenCV基于ORB算法实现角点检测的具体代码,供大家参考,具体内容如下

ORB算法是FAST算法和BRIEF算法的结合,ORB可以用来对图像中的关键点快速创建特征向量,并用这些特征向量来识别图像中的对象。

实例化ORB

orb = cv.ORB_create(nfeatures)

参数:

  • nfeatures:特征点的最大数量

利用orb.detectAndCompute()检测关键点并计算

kp, des = orb.detectAndCompute(gray, None)

参数:

  • gray:进行关键点检测的图像(灰度图像)

返回:

  • kp:关键点信息,包括位置,尺度,方向信息
  • des:关键点描述符,每个关键点BRIEF特征向量,二进制字符串。

将关键点检测结果绘制在图像上

cv.drawKeypoints(image, keypoints, outputimage, color, flags)

参数:

  • image: 原始图像
  • keypoints:关键点信息,将其绘制在图像上
  • outputimage:输出图片,可以是原始图像
  • color:颜色设置,通过修改(b,g,r)的值,更改画笔的颜色,b=蓝色,g=绿色,r=红色。
  • flags:绘图功能的标识设置

1、cv2.DRAW_MATCHES_FLAGS_DEFAULT:创建输出图像矩阵,使用现存的输出图像绘制匹配对和特征点,对每一个关键点只绘制中间。
2、cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG:不创建输出图像矩阵,而是在输出图像上绘制匹配对。
3、cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS:对每一个特征点绘制带大小和方向的关键点图形。
4、cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS:单点的特征点不被绘制。

import cv2 as cv
from matplotlib import pyplot as plt

# 1.图像读取
img = cv.imread("1.jpg")
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

# 2.ORB角点检测
# 2.1实例化ORB对象
orb = cv.ORB_create(nfeatures=1000)

# 2.2 检测关键点,并计算特征描述符
kp, des = orb.detectAndCompute(gray, None)

print(des.shape)

# 3.将关键点检测在图像上
img2 = cv.drawKeypoints(img, kp, None, flags=0) # 也可以添加 color 参数指定图像显示关键点的颜色,例如 img2 = cv.drawKeypoints(img, kp, None, color=(0, 0, 255), flags=0)

# 4.绘制图像
plt.figure(figsize=(10, 8), dpi=100)
plt.imshow(img2[:, :, ::-1])
plt.xticks([]),
plt.yticks([])
plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • OpenCV角点检测的实现示例

    目录 Harris 角点检测算法 1. 角点 角点检测算法的基本思想: 2. 流程 3. 实现 Harris 角点检测算法 1. 角点 角点是水平方向.垂直方向变化都很大的像素. 角点检测算法的基本思想: 使用一个固定窗口在图像上进行任意方向上的滑动,比较滑动前与滑动后两种情况,窗口中的像素灰度变化程度,如果存在任意方向上的滑动,都有着较大灰度变化,那么我们可以认为该窗口中存在角点. 目前,角点检测算法还不是十分完善,许多算法需要依赖大量的训练集和冗余数据来防止和减少错误的特征的出现.对于角点检

  • OpenCV半小时掌握基本操作之角点检测

    目录 概述 角点检测 角点检测代码 概述 OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界. 角点检测 角点检测 (Corner Detection) 是图像的重要特征. 角点可以帮助我们实现图像对其, 图像拼接, 目标识别等等重要用途. Harris 角点检测 (Harris Corner Detection) 是最基础也是最重要的一种角点检测算法. 通过计算图像在 x, y 上平移的自相似性 (Self-Similari

  • python opencv角点检测连线功能的实现代码

    原始图 角点检测 points = cv2.goodFeaturesToTrack(gray, 100, 0.01, 10) points = np.int0(points).reshape(-1,2) for point in points: x, y = point.ravel() cv2.circle(img, (x, y), 10, (0, 255, 0), -1) 连线 cv2.line(img, (0, y1), (1000, y1), (0, 255, 0), thickness=

  • OpenCV特征提取与检测之Harris角点检测

    目录 前言 1. 效果图 2. 原理 3. 源码 3.1 Harris角点检测 3.2 精细角点检测 总结 前言 这篇博客将了解什么是特征,角点,哈里斯角点检测(Harris Corner Detection)的概念.并使用cv2.cornerHarris(),cv2.cornerSubPix()实现哈里斯角点检测: 1. 效果图 原图 VS Harris角点检测效果图如下: 原图 VS Harris角点检测效果图如下: 惊细角点效果图如下:Harris角点用红色像素标记,精细角点用绿色像素标记

  • Python中OpenCV图像特征和harris角点检测

    目录 概念 第一步:计算一个梯度 Ix,Iy 第二步:整合矩阵,计算特征值 第三步:比较特征值的大小 第四步: 非极大值抑制,把真正的角点留下来,角点周围的过滤掉 代码实现 概念 第一步:计算一个梯度 Ix,Iy 第二步:整合矩阵,计算特征值 第三步:比较特征值的大小 第四步: 非极大值抑制,把真正的角点留下来,角点周围的过滤掉 代码实现 import cv2 import numpy as np img =cv2.imread('pie.png') print('img.shape',img.

  • Java OpenCV图像处理之SIFT角点检测详解

    目录 介绍 示例代码 效果图 补充 介绍 在某些情况下对图像进行缩放后,角点信息可能会丢失,这时候Harri便不能检测到所有的角点.SIFT(scale-invariant feature transform) 刚好克服了这个问题,对图像特征的检测,尽量不受图像尺寸变化的影响.SIFT并不直接检测关键点. 其中关键点的检测是由DOG(Difference of Gaussians)检测完成的(DOG是通过不同的高斯滤波器对同一张图像进行处理,来得到关键点的).SIFT仅通过特征向量来描述特征点周

  • OpenCV特征提取与检测之Shi-Tomasi角点检测器

    前言 角点通常被定义为两条边的交点,或者说,角点的局部邻域应该具有两个不同区域的不同方向的边界.角点检测(Corner Detection)是计算机视觉系统中获取图像特征的一种方法,广泛应用于运动检测.图像匹配.视频跟踪.三维重建和目标识别等,也可称为特征点检测. 角点检测算法的基本思想: 使用一个固定窗口在图像上进行任意方向上的滑动,比较滑动前与滑动后两种情况,窗口中的像素灰度变化程度,如果存在任意方向上的滑动,都有着较大灰度变化,那么我们可以认为该窗口中存在角点. 目前,角点检测算法还不是十

  • 基于MFC和OpenCV实现角点检测

    本文实例为大家分享了MFC和OpenCV实现角点检测的具体代码,供大家参考,具体内容如下 // 角点检测 // 根据<基于OpenCV的计算机视觉技术实现> #define max_corners 200; // 限定的最大角点数 IplImage* srcImage = 0; // 待处理的源图像 IplImage* ImageShow = 0; // 存储显示带角点的图像 IplImage* grayImage = 0; // 原始图像转换成的灰阶图像 IplImage* corners1

  • OpenCV哈里斯(Harris)角点检测的实现

    环境 pip install opencv-python==3.4.2.16 pip install opencv-contrib-python==3.4.2.16 理论 克里斯·哈里斯(Chris Harris)和迈克·史蒂芬斯(Mike Stephens)在1988年的论文<组合式拐角和边缘检测器>中做了一次尝试找到这些拐角的尝试,所以现在将其称为哈里斯拐角检测器. 函数:cv2.cornerHarris(),cv2.cornerSubPix() 示例代码 import cv2 impor

  • Android基于OpenCV实现Harris角点检测

    目录 什么是角点? 为什么要检测角点? Harris角点检测 API 操作 效果 源码 什么是角点? 角点就是极值点,即在某方面属性特别突出的点.当然,你可以自己定义角点的属性(设置特定熵值进行角点检测).角点可以是两条线的交叉处,也可以是位于相邻的两个主要方向不同的事物上的点.角点通常被定义为两条边的交点,或者说,角点的局部邻域应该具有两个不同区域的不同方向的边界.常见的角点有: 灰度梯度的最大值对应的像素点: 两条直线或者曲线的交点: 一阶梯度的导数最大值和梯度方向变化率最大的像素点: 一阶

随机推荐