matplotlib绘制鼠标的十字光标的实现(自定义方式,官方实例)

matplotlib在widgets模块提供Cursor类用于支持十字光标的生成。另外官方还提供了自定义十字光标的实例。

widgets模块Cursor类源码

class Cursor(AxesWidget):
  """
  A crosshair cursor that spans the axes and moves with mouse cursor.

  For the cursor to remain responsive you must keep a reference to it.

  Parameters
  ----------
  ax : `matplotlib.axes.Axes`
    The `~.axes.Axes` to attach the cursor to.
  horizOn : bool, default: True
    Whether to draw the horizontal line.
  vertOn : bool, default: True
    Whether to draw the vertical line.
  useblit : bool, default: False
    Use blitting for faster drawing if supported by the backend.

  Other Parameters
  ----------------
  **lineprops
    `.Line2D` properties that control the appearance of the lines.
    See also `~.Axes.axhline`.

  Examples
  --------
  See :doc:`/gallery/widgets/cursor`.
  """

  def __init__(self, ax, horizOn=True, vertOn=True, useblit=False,
         **lineprops):
    AxesWidget.__init__(self, ax)

    self.connect_event('motion_notify_event', self.onmove)
    self.connect_event('draw_event', self.clear)

    self.visible = True
    self.horizOn = horizOn
    self.vertOn = vertOn
    self.useblit = useblit and self.canvas.supports_blit

    if self.useblit:
      lineprops['animated'] = True
    self.lineh = ax.axhline(ax.get_ybound()[0], visible=False, **lineprops)
    self.linev = ax.axvline(ax.get_xbound()[0], visible=False, **lineprops)

    self.background = None
    self.needclear = False

  def clear(self, event):
    """Internal event handler to clear the cursor."""
    if self.ignore(event):
      return
    if self.useblit:
      self.background = self.canvas.copy_from_bbox(self.ax.bbox)
    self.linev.set_visible(False)
    self.lineh.set_visible(False)

  def onmove(self, event):
    """Internal event handler to draw the cursor when the mouse moves."""
    if self.ignore(event):
      return
    if not self.canvas.widgetlock.available(self):
      return
    if event.inaxes != self.ax:
      self.linev.set_visible(False)
      self.lineh.set_visible(False)

      if self.needclear:
        self.canvas.draw()
        self.needclear = False
      return
    self.needclear = True
    if not self.visible:
      return
    self.linev.set_xdata((event.xdata, event.xdata))

    self.lineh.set_ydata((event.ydata, event.ydata))
    self.linev.set_visible(self.visible and self.vertOn)
    self.lineh.set_visible(self.visible and self.horizOn)

    self._update()

  def _update(self):
    if self.useblit:
      if self.background is not None:
        self.canvas.restore_region(self.background)
      self.ax.draw_artist(self.linev)
      self.ax.draw_artist(self.lineh)
      self.canvas.blit(self.ax.bbox)
    else:
      self.canvas.draw_idle()
    return False

自定义十字光标实现

简易十字光标实现

首先在 Cursor类的构造方法__init__中,构造了十字光标的横线、竖线和坐标显示;然后在on_mouse_move方法中,根据事件数据更新横竖线和坐标显示,最后在调用时,通过mpl_connect方法绑定on_mouse_move方法和鼠标移动事件'motion_notify_event'。

import matplotlib.pyplot as plt
import numpy as np

class Cursor:
  """
  A cross hair cursor.
  """
  def __init__(self, ax):
    self.ax = ax
    self.horizontal_line = ax.axhline(color='k', lw=0.8, ls='--')
    self.vertical_line = ax.axvline(color='k', lw=0.8, ls='--')
    # text location in axes coordinates
    self.text = ax.text(0.72, 0.9, '', transform=ax.transAxes)

  def set_cross_hair_visible(self, visible):
    need_redraw = self.horizontal_line.get_visible() != visible
    self.horizontal_line.set_visible(visible)
    self.vertical_line.set_visible(visible)
    self.text.set_visible(visible)
    return need_redraw

  def on_mouse_move(self, event):
    if not event.inaxes:
      need_redraw = self.set_cross_hair_visible(False)
      if need_redraw:
        self.ax.figure.canvas.draw()
    else:
      self.set_cross_hair_visible(True)
      x, y = event.xdata, event.ydata
      # update the line positions
      self.horizontal_line.set_ydata(y)
      self.vertical_line.set_xdata(x)
      self.text.set_text('x=%1.2f, y=%1.2f' % (x, y))
      self.ax.figure.canvas.draw()

x = np.arange(0, 1, 0.01)
y = np.sin(2 * 2 * np.pi * x)

fig, ax = plt.subplots()
ax.set_title('Simple cursor')
ax.plot(x, y, 'o')
cursor = Cursor(ax)
#关键部分,绑定鼠标移动事件处理
fig.canvas.mpl_connect('motion_notify_event', cursor.on_mouse_move)
plt.show()

优化十字光标实现

在简易实现中,每次鼠标移动时,都会重绘整个图像,这样效率比较低。
在优化实现中,每次鼠标移动时,只重绘光标和坐标显示,背景图像不再重绘。

import matplotlib.pyplot as plt
import numpy as np

class BlittedCursor:
  """
  A cross hair cursor using blitting for faster redraw.
  """
  def __init__(self, ax):
    self.ax = ax
    self.background = None
    self.horizontal_line = ax.axhline(color='k', lw=0.8, ls='--')
    self.vertical_line = ax.axvline(color='k', lw=0.8, ls='--')
    # text location in axes coordinates
    self.text = ax.text(0.72, 0.9, '', transform=ax.transAxes)
    self._creating_background = False
    ax.figure.canvas.mpl_connect('draw_event', self.on_draw)

  def on_draw(self, event):
    self.create_new_background()

  def set_cross_hair_visible(self, visible):
    need_redraw = self.horizontal_line.get_visible() != visible
    self.horizontal_line.set_visible(visible)
    self.vertical_line.set_visible(visible)
    self.text.set_visible(visible)
    return need_redraw

  def create_new_background(self):
    if self._creating_background:
      # discard calls triggered from within this function
      return
    self._creating_background = True
    self.set_cross_hair_visible(False)
    self.ax.figure.canvas.draw()
    self.background = self.ax.figure.canvas.copy_from_bbox(self.ax.bbox)
    self.set_cross_hair_visible(True)
    self._creating_background = False

  def on_mouse_move(self, event):
    if self.background is None:
      self.create_new_background()
    if not event.inaxes:
      need_redraw = self.set_cross_hair_visible(False)
      if need_redraw:
        self.ax.figure.canvas.restore_region(self.background)
        self.ax.figure.canvas.blit(self.ax.bbox)
    else:
      self.set_cross_hair_visible(True)
      # update the line positions
      x, y = event.xdata, event.ydata
      self.horizontal_line.set_ydata(y)
      self.vertical_line.set_xdata(x)
      self.text.set_text('x=%1.2f, y=%1.2f' % (x, y))

      self.ax.figure.canvas.restore_region(self.background)
      self.ax.draw_artist(self.horizontal_line)
      self.ax.draw_artist(self.vertical_line)
      self.ax.draw_artist(self.text)
      self.ax.figure.canvas.blit(self.ax.bbox)

x = np.arange(0, 1, 0.01)
y = np.sin(2 * 2 * np.pi * x)

fig, ax = plt.subplots()
ax.set_title('Blitted cursor')
ax.plot(x, y, 'o')
blitted_cursor = BlittedCursor(ax)
fig.canvas.mpl_connect('motion_notify_event', blitted_cursor.on_mouse_move)
plt.show()

捕捉数据十字光标实现

在前面的两种实现中,鼠标十字光标可以随意移动。在本实现中,十字光标只会出现在离鼠标x坐标最近的数据点上。

import matplotlib.pyplot as plt
import numpy as np

class SnappingCursor:
  """
  A cross hair cursor that snaps to the data point of a line, which is
  closest to the *x* position of the cursor.

  For simplicity, this assumes that *x* values of the data are sorted.
  """
  def __init__(self, ax, line):
    self.ax = ax
    self.horizontal_line = ax.axhline(color='k', lw=0.8, ls='--')
    self.vertical_line = ax.axvline(color='k', lw=0.8, ls='--')
    self.x, self.y = line.get_data()
    self._last_index = None
    # text location in axes coords
    self.text = ax.text(0.72, 0.9, '', transform=ax.transAxes)

  def set_cross_hair_visible(self, visible):
    need_redraw = self.horizontal_line.get_visible() != visible
    self.horizontal_line.set_visible(visible)
    self.vertical_line.set_visible(visible)
    self.text.set_visible(visible)
    return need_redraw

  def on_mouse_move(self, event):
    if not event.inaxes:
      self._last_index = None
      need_redraw = self.set_cross_hair_visible(False)
      if need_redraw:
        self.ax.figure.canvas.draw()
    else:
      self.set_cross_hair_visible(True)
      x, y = event.xdata, event.ydata
      index = min(np.searchsorted(self.x, x), len(self.x) - 1)
      if index == self._last_index:
        return # still on the same data point. Nothing to do.
      self._last_index = index
      x = self.x[index]
      y = self.y[index]
      # update the line positions
      self.horizontal_line.set_ydata(y)
      self.vertical_line.set_xdata(x)
      self.text.set_text('x=%1.2f, y=%1.2f' % (x, y))
      self.ax.figure.canvas.draw()

x = np.arange(0, 1, 0.01)
y = np.sin(2 * 2 * np.pi * x)

fig, ax = plt.subplots()
ax.set_title('Snapping cursor')
line, = ax.plot(x, y, 'o')
snap_cursor = SnappingCursor(ax, line)
fig.canvas.mpl_connect('motion_notify_event', snap_cursor.on_mouse_move)
plt.show()

参考资料

https://www.matplotlib.org.cn/gallery/misc/cursor_demo_sgskip.html

到此这篇关于matplotlib绘制鼠标的十字光标的实现(自定义方式,官方实例)的文章就介绍到这了,更多相关matplotlib鼠标十字光标 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • matplotlib绘制多子图共享鼠标光标的方法示例

    matplotlib官方除了提供了鼠标十字光标的示例,还提供了同一图像内多子图共享光标的示例,其功能主要由widgets模块中的MultiCursor类提供支持. MultiCursor类与Cursor类参数类似,差异主要在: Cursor类参数只有一个ax,即需要显示光标的子图:MultiCursor类参数为canvas和axes,其中axes为需要共享光标的子图列表. Cursor类中,光标默认是十字线:MultiCursor类中,光标默认为竖线. 官方示例 import numpy as

  • matplotlib绘制鼠标的十字光标的实现(内置方式)

    相对于echarts等基于JavaScript的图表库,matplotlib的交互能力相对较差. 在实际应用中,我们经常想使用十字光标来定位数据坐标,matplotlib内置提供支持. 官方示例 matplotlib提供了官方示例https://matplotlib.org/gallery/widgets/cursor.html from matplotlib.widgets import Cursor import numpy as np import matplotlib.pyplot as

  • matplotlib自定义鼠标光标坐标格式的实现

    matplotlib默认在图像Windows窗口中显示当前鼠标光标所在位置的坐标,格式为x=xx, y=xx. 鼠标光标的坐标格式由子图模块Axes中的format_coord函数控制. 通过重写format_coord函数即可实现坐标的自定义格式. 注意:调用format_coord函数的对象是子图对象,常见的错误主要在没有正确的获取当前子图对象. format_coord函数源码 matplotlib.axes.Axes.format_coord def format_coord(self,

  • matplotlib绘制鼠标的十字光标的实现(自定义方式,官方实例)

    matplotlib在widgets模块提供Cursor类用于支持十字光标的生成.另外官方还提供了自定义十字光标的实例. widgets模块Cursor类源码 class Cursor(AxesWidget): """ A crosshair cursor that spans the axes and moves with mouse cursor. For the cursor to remain responsive you must keep a reference

  • Python+matplotlib绘制不同大小和颜色散点图实例

     具有不同标记颜色和大小的散点图演示. 演示结果: 实现代码: import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook # Load a numpy record array from yahoo csv data with fields date, open, close, # volume, adj_close from the mpl-data/example directory

  • python+matplotlib绘制饼图散点图实例代码

    本文是从matplotlib官网上摘录下来的一个实例,实现的功能是Python+matplotlib绘制自定义饼图作为散点图的标记,具体如下. 首先看下演示效果 实例代码: import numpy as np import matplotlib.pyplot as plt # first define the ratios r1 = 0.2 # 20% r2 = r1 + 0.4 # 40% # define some sizes of the scatter marker sizes = n

  • 利用PyQt5+Matplotlib 绘制静态/动态图的实现代码

    代码编辑环境 Win10+(Pycharmm or Vscode)+PyQt 5.14.2 功能实现 静态作图:数据作图,取决于作图函数,可自行修改 动态作图:产生数据,获取并更新数据,最后刷新显示,可用于实现数据实时采集并显示的场景 效果展示 代码块(业务与逻辑分离)业务–UI界面代码 文件名:Ui_realtimer_plot.py # -*- coding: utf-8 -*- # Added by the Blog author VERtiCaL on 2020/07/12 at SSR

  • python使用matplotlib绘制折线图教程

    matplotlib简介 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. 它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定. 在Linux下比较著名的数据图工具还有gnuplot,这个是免费的,Python有一个包可以调用gnuplot,但是语法比较不

  • Python使用matplotlib绘制动画的方法

    本文实例讲述了Python使用matplotlib绘制动画的方法.分享给大家供大家参考.具体分析如下: matplotlib从1.1.0版本以后就开始支持绘制动画 下面是几个的示例: 第一个例子使用generator,每隔两秒,就运行函数data_gen: # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig =

  • python使用matplotlib绘制柱状图教程

    Matplotlib的概念这里就不多介绍了,关于绘图库Matplotlib的安装方法:点击这里 小编之前也和大家分享过python使用matplotlib实现的折线图和制饼图效果,感兴趣的朋友们也可以点击查看,下面来看看python使用matplotlib绘制柱状图的方法吧,具体如下: 1. 基本的柱状图 import matplotlib.pyplot as plt data = [5, 20, 15, 25, 10] plt.bar(range(len(data)), data) plt.s

  • Python基于matplotlib绘制栈式直方图的方法示例

    本文实例讲述了Python基于matplotlib绘制栈式直方图的方法.分享给大家供大家参考,具体如下: 平时我们只对一组数据做直方图统计,这样我们只要直接画直方图就可以了. 但有时候我们同时画多组数据的直方图(比如说我大一到大四跑大学城内环的用时的分布),大一到大四用不同颜色的直方图,显示在一张图上,这样会很直观. #!/usr/bin/env python # -*- coding: utf-8 -*- #http://www.jb51.net/article/100363.htm # nu

随机推荐