Python 可视化神器Plotly详解

文 | 潮汐

来源:Python 技术「ID: pythonall」

学习Python是做数分析的最基础的一步,数据分析离不开数据可视化。Python第三方库中我们最常用的可视化库是 pandas,matplotlib,pyecharts, 当然还有 Tableau,另外最近在学习过程中发现另一款可视化神器-Plotly,它是一款用来做数据分析和可视化的在线平台,功能非常强大, 可以在线绘制很多图形比如条形图、散点图、饼图、直方图等等。除此之外,它还支持在线编辑,以及多种语言 python、javascript、matlab、R等许多API。它在python中使用也非常简单,直接用pip install plotly 安装好即可使用。本文将结合 plotly 库在 jupyter notebook 中来进行图形绘制。

使用 Plotly 可以画出很多媲美Tableau的高质量图,如下图所示:

折线点图

折现点图画图步骤如下:首先在 Pycharm 界面输入 jupyter notebook后进入网页编辑界面,新建一个文件,导入相应的包即可进行图形绘制:

# import pkg
from plotly.graph_objs import Scatter,Layout
import plotly
import plotly.offline as py
import numpy as np
import plotly.graph_objs as go
#设置编辑模式
plotly.offline.init_notebook_mode(connected=True)
#制作折线图
N = 150
random_x = np.linspace(0,1,N)
random_y0 = np.random.randn(N)+7
random_y1 = np.random.randn(N)
random_y2 = np.random.randn(N)-7

trace0 = go.Scatter(
  x = random_x,
  y = random_y0,
  mode = 'markers',
  name = 'markers'
)
trace1 = go.Scatter(
  x = random_x,
  y = random_y1,
  mode = 'lines+markers',
  name = 'lines+markers'
)
trace2 = go.Scatter(
  x = random_x,
  y = random_y2,
  mode = 'lines',
  name = 'lines'
)
data = [trace0,trace1,trace2]
py.iplot(data)

显示结果如下:

直方图

# 直方图
trace0 = go.Bar(
  x = ['Jan','Feb','Mar','Apr', 'May','Jun',
     'Jul','Aug','Sep','Oct','Nov','Dec'],
  y = [20,15,25,16,18,28,19,67,12,56,14,27],
  name = 'Primary Product',
  marker=dict(
    color = 'rgb(49,130,189)'
  )
)
trace1 = go.Bar(
  x = ['Jan','Feb','Mar','Apr', 'May','Jun',
     'Jul','Aug','Sep','Oct','Nov','Dec'],
  y = [29,14,32,14,16,19,25,14,10,12,82,16],
  name = 'Secondary Product',
  marker=dict(
    color = 'rgb(204,204,204)'
  )
)
data = [trace0,trace1]
py.iplot(data)

显示结果如下:

散点图

# 散点图
trace1 = go.Scatter(
   y = np.random.randn(700),
  mode = 'markers',
  marker = dict(
    size = 16,
    color = np.random.randn(800),
    colorscale = 'Viridis',
    showscale = True
  )
)
data = [trace1]
py.iplot(data)

显示结果如下:

总结

今天的文章主要学习可视化神器-plotpy 的相关操作,希望在平时的工作中有所应用。更多的内容详见 https://plotly.com/python/

到此这篇关于Python 可视化神器Plotly详解的文章就介绍到这了,更多相关Python 可视化神器Plotly内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python plotly绘制直方图实例详解

    计算数值出现的次数 import cufflinks as cf cf.go_offline() import numpy as np import pandas as pd set_slippage_avg_cost = [22.01, 20.98, 17.11, 9.06, 9.4, 3.65, 19.65, 7.01, 11.21, 10.3, 5.1, 23.98, 12.03, 8.13, 8.07, 9.28, 3.93, 4.23, 18.6, 8.22, 7.85, 5.39,

  • 地图可视化神器kepler.gl python接口的使用方法

    1 简介 kepler.gl作为开源地理空间数据可视化神器,也一直处于活跃的迭代开发状态下.而在前不久,kepler.gl正式发布了其2.4.0版本,下面我们就来对其重要的新特性进行介绍: 2 kepler.gl 2.4.0重要新特性 2.1 增量时间窗口 在这次更新中,为时间序列数据的可视化新增了增量时间窗口功能,在上一个版本2.3.2中,当我们的数据集带有时间类型字段时,在添加对应的Filters之后,显示出的时间窗口是这个样子的: 而在2.4.0版本中,时间窗口如图所示: 在如下图一样从默

  • 详解Python可视化神器Yellowbrick使用

    机器学习中非常重要的一环就是数据的可视化分析,从源数据的可视化到结果数据的可视化都离不开可视化工具的使用,sklearn+matplotlib的组合在日常的工作中已经满足了绝对大多数的需求,今天主要介绍的是一个基于sklearn和matplotlib模块进行扩展的可视化工具Yellowbrick. Yellowbrick的官方文档在这里.Yellowbrick是由一套被称为"Visualizers"组成的可视化诊断工具组成的套餐,其由Scikit-Learn API延伸而来,对模型选择

  • 详解Python使用Plotly绘图工具,绘制甘特图

    今天来讲一下如何使用Python 的绘图工具Plotly来绘制甘特图的方法 甘特图大家应该了解熟悉,就是通过条形来显示项目的进度.时间安排等相关情况的. 我们今天来学习一下,如何使用ployly来绘制甘特图 绘制甘特图的函数为Plotly.figure_factoryz中create_gantt方法 通过参数事件Task,开始Start,结束Finish的时间的数据来绘制甘特图 import plotly as py import plotly.figure_factory as ff pypl

  • Python使用plotly绘制数据图表的方法

    导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示. 不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示.本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示. Plotly简介 Plotly是一款使用JavaScript开发的制图工具,提供了与主流数据分析语言交互的API(如:Pyt

  • Python 可视化神器Plotly详解

    文 | 潮汐 来源:Python 技术「ID: pythonall」 学习Python是做数分析的最基础的一步,数据分析离不开数据可视化.Python第三方库中我们最常用的可视化库是 pandas,matplotlib,pyecharts, 当然还有 Tableau,另外最近在学习过程中发现另一款可视化神器-Plotly,它是一款用来做数据分析和可视化的在线平台,功能非常强大, 可以在线绘制很多图形比如条形图.散点图.饼图.直方图等等.除此之外,它还支持在线编辑,以及多种语言 python.ja

  • python可视化之颜色映射详解

    本文主要介绍一下在学习可视化过程里遇到的一些情况 比如cmap=plt.cm.Blues的映射 import matplotlib.pyplot as plt from random_walk import RandomWalk # Keep making new walks, as long as the program is active. while True: # Make a random walk. rw = RandomWalk(50_000) rw.fill_walk() # P

  • Python数据可视化:顶级绘图库plotly详解

    有史以来最牛逼的绘图工具,没有之一 plotly是现代平台的敏捷商业智能和数据科学库,它作为一款开源的绘图库,可以应用于Python.R.MATLAB.Excel.JavaScript和jupyter等多种语言,主要使用的js进行图形绘制,实现过程中主要就是调用plotly的函数接口,底层实现完全被隐藏,便于初学者的掌握. 下面主要从Python的角度来分析plotly的绘图原理及方法: ###安装plotly: 使用pip来安装plotly库,如果机器上没有pip,需要先进行pip的安装,这里

  • 最强Python可视化绘图库Plotly详解用法

    今天给大家分享一篇可视化干货,介绍的是功能强大的开源 Python 绘图库 Plotly,教你如何用超简单的(甚至只要一行)代码,绘制出更棒的图表. 我之前一直使用 matplotlib ,由于它复杂的语法,我已经"沉没"在里面太多的时间成本.这也导致我花费了不知多少个深夜,在 StackOverflow 上搜索如何"格式化日期"或"增加第二个Y轴". 但我们现在有一个更好的选择了 ,比如易于使用.文档健全.功能强大的开源 Python 绘图库

  • 能让Python提速超40倍的神器Cython详解

    让Python提速超过40倍的神器:Cython 人工智能最火的语言,自然是被誉为迄今为止最容易使用的代码之一的Python.Python代码素来以直观.高可读性著称. 然而,易用的背后,是Python无法逾越的障碍:慢.尤其是C程序员,这群快枪手简直无法忍受Python的慢. 所以有人就想了各种方法去解决这个问题,本文就介绍其中的一种.如果你的代码是纯Python,或者你必须用一个大的for循环却无法放入矩阵因为数据必须按顺序处理,那么就可以使用Cython来加速Python. 1.什么是Cy

  • Python数据可视化绘图实例详解

    目录 利用可视化探索图表 1.数据可视化与探索图 2.常见的图表实例 数据探索实战分享 1.2013年美国社区调查 2.波士顿房屋数据集 利用可视化探索图表 1.数据可视化与探索图 数据可视化是指用图形或表格的方式来呈现数据.图表能够清楚地呈现数据性质, 以及数据间或属性间的关系,可以轻易地让人看图释义.用户通过探索图(Exploratory Graph)可以了解数据的特性.寻找数据的趋势.降低数据的理解门槛. 2.常见的图表实例 本章主要采用 Pandas 的方式来画图,而不是使用 Matpl

  • Python Matplotlib数据可视化模块使用详解

    目录 前言 1 matplotlib 开发环境搭建 2 绘制基础 2.1 绘制直线 2.2 绘制折线 2.3 设置标签文字和线条粗细 2.4 绘制一元二次方程的曲线 y=x^2 2.5 绘制正弦曲线和余弦曲线 3 绘制散点图 4 绘制柱状图 5 绘制饼状图 6 绘制直方图 7 绘制等高线图 8 绘制三维图 总结 本文主要介绍python 数据可视化模块 Matplotlib,并试图对其进行一个详尽的介绍. 通过阅读本文,你可以: 了解什么是 Matplotlib 掌握如何用 Matplotlib

  • Python可视化神器pyecharts绘制柱状图

    目录 主题介绍 图表参数 主题详解 柱状图模板系列 海量数据柱状图动画展示 收入支出柱状图(适用于记账) 三维数据叠加 柱状图与折线图多维展示(同屏展示) 单列多维数据展示 3D柱状图 主题介绍 pyecharts里面有很多的主题可以供我们选择,我们可以根据自己的需要完成主题的配置,这样就告别了软件的限制,可以随意的发挥自己的艺术细胞了. 图表参数 ''' def add_yaxis( # 系列名称,用于 tooltip 的显示,legend 的图例筛选. series_name: str, #

  • 基于Python闭包及其作用域详解

    关于Python作用域的知识在python作用域有相应的笔记,这个笔记是关于Python闭包及其作用域的详细的笔记 如果在一个内部函数里,对一个外部作用域(但不是全局作用域)的变量进行引用,那么内部函数就被称为闭包(closure),而这个被内部函数引用的变量则被成为自由变量 闭包和函数调用没多少相关,而是关于使用定义在其他作用域的变量 命名空间和作用域 我们把命名空间看做一个大型的字典类型(Dict),里面包含了所有变量的名字和值的映射关系.在 Python 中,作用域实际上可以看做是"在当前

随机推荐