pandas抽取行列数据的几种方法

取行和列的几种常用方式:

data[ 列名 ]: 取单列或多列,不能用连续方式取,也不能用于取行。
data.列名: 只用于取单列,不能用于行。
data[ i:j ]: 用起始行下标(i)和终止行下标(j)取单行或者连续多行,不能用于列的选取。
data.loc[行名,列名]: 用对象的.loc[]方法实现各种取数据方式。
data.iloc[行下标,列下标]: 用对象的.iloc[]方法实现各种取数据方式。

首先生成一个DataFrame对象:

import pandas as pd
score = [[34,67,87],[68,98,58],[75,73,86],[94,59,81]]
name = ['小新','小红','小李']
course = ['语文','数学','英语','政治']
mydata = pd.DataFrame(data=score,columns=name,index=course)#指定行列名
print(mydata)

小新  小红  小李
语文  34  67  87
数学  68  98  58
英语  75  73  86
政治  94  59  81

1. 直接用列名抽取单列或多列 – data[列名]

print(mydata['小红']) # 输出是一个Series对象,而不是DataFrame对象
语文 67
数学 98
英语 73
政治 59 

print(mydata[['小红']]) # 加了[],此时输出的是DataFrame对象
 小红
语文 67
数学 98
英语 73
政治 59

print(mydata[['小红','小李']]) #选择两列,此时必须用[]将两列括起来
 小红 小李
语文 67 87
数学 98 58
英语 73 86
政治 59 81

2. 用行所在矩阵索引抽取一个行或者连续多行数据

print(mydata[0:1]) #通过0:1选择了第0行
 小新 小红 小李
语文 34 67 87

mydata[0:3] #通过0:3选择了第0,1,2三行
 小新 小红 小李
语文 34 67 87
数学 68 98 58
英语 75 73 86

3. 用数据的“·”方式获取某一列数据

print(mydata.小红) #通过.小红选择了小红列,注意输出的是Series对象
语文 67
数学 98
英语 73
政治 59 

4. panadas 中利用DataFrame对象的.loc[,]、.iloc[,]方法抽取数据

引例:

import pandas as pd
score = [[34,67,87],[68,98,58],[75,73,86],[94,59,81]]
name = ['小新','小红','小李']
course = ['语文','数学','英语','政治']
mydata1 = pd.DataFrame(data=score,columns=name,index=course) # 指定行名(index)和列名(columns)
print(mydata1)
mydata2 = pd.DataFrame(score) # 不指定行列名,默认使用0,1,2……
print(mydata2)

小明  小红  小李
语文  34  67  87
数学  68  98  58
英语  75  73  86
政治  94  59  81
    0   1   2
0  34  67  87
1  68  98  58
2  75  73  86
3  94  59  81

DataFrame对象的.loc[]和.iloc[]方法都可用于抽取数据,区别是:

  • .loc[]: 以列名和行名作为参数。
  • .iloc[]: 以二维矩阵的位置指标(即0,1,2……)作为参数。

.loc[]语法:

有两个输入参数,第一个指定行名,第二个指定列名。当只有一个参数时,默认是行名(即抽取整行),所有列都选中。

.iloc[]语法:

有两个输入参数,第一个指定行位置,第二个指定列位置。当只有一个参数时,默认是行位置(即抽取整行),所有列都选中。

总结:

当需要选中所有行的某几列时,行参数可以省略,列参数需要指定,此时列参数前面必须带上“,:”,形如.loc[:,列参数],.iloc[:,列参数]。

两种方法当只指定一个输入参数时,都默是跟“行”相关,而“列”则全部被选中。如何行和列都需要指定时,中间用“逗号,”隔开,这非常重要,否则出错。

两个方法都接受两个参数,第一个是“行标签”或者“矩阵行号”,第二个是“列标签”或者“矩阵列号”。

学习链接:

Panadas 中利用DataFrame对象的.loc[,]、.iloc[,]方法抽取数据
pandas的DataFrame对象抽取“整列”或者“整行”数据

到此这篇关于pandas抽取行列数据的几种方法的文章就介绍到这了,更多相关pandas抽取行列数据内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 详解pandas中利用DataFrame对象的.loc[]、.iloc[]方法抽取数据

    pandas的DataFrame对象,本质上是二维矩阵,跟常规二维矩阵的差别在于前者额外指定了每一行和每一列的名称.这样内部数据抽取既可以用"行列名称(对应.loc[]方法)",也可以用"矩阵下标(对应.iloc[]方法)"两种方式进行. 下面具体说明: (以下程序均在Jupyter notebook中进行,部分语句的print()函数省略) 首先生成一个DataFrame对象: import pandas as pd score = [[34,67,87],[68

  • pandas抽取行列数据的几种方法

    取行和列的几种常用方式: data[ 列名 ]: 取单列或多列,不能用连续方式取,也不能用于取行. data.列名: 只用于取单列,不能用于行. data[ i:j ]: 用起始行下标(i)和终止行下标(j)取单行或者连续多行,不能用于列的选取. data.loc[行名,列名]: 用对象的.loc[]方法实现各种取数据方式. data.iloc[行下标,列下标]: 用对象的.iloc[]方法实现各种取数据方式. 首先生成一个DataFrame对象: import pandas as pd sco

  • 详细介绍在pandas中创建category类型数据的几种方法

    在pandas中创建category类型数据的几种方法之详细攻略 T1.直接创建 category类型数据 可知,在category类型数据中,每一个元素的值要么是预设好的类型中的某一个,要么是空值(np.nan). T2.利用分箱机制(结合max.mean.min实现二分类)动态添加 category类型数据 输出结果 [NaN, 'medium', 'medium', 'fat'] Categories (2, object): ['medium', 'fat']    name    ID

  • Pandas读取行列数据最全方法

    1.读取方法有按行(单行,多行连续,多行不连续),按列(单列,多列连续,多列不连续):部分不连续行不连续列:按位置(坐标),按字符(索引):按块(list):函数有 df.iloc(), df.loc(), df.iat(), df.at(), df.ix(). 2.转换为DF,赋值columns,index,修改添加数据,取行列索引 data = {'省份': ['北京', '上海', '广州', '深圳'], '年份': ['2017', '2018', '2019', '2020'], '

  • vue实现行列转换的一种方法

    行列转换是一个老生常谈的问题,这几天逛知乎有遇到了这个问题.一个前端说,拿到的数据是单列的需要做转换才能够绑定,折腾了好久才搞定,还说这个应该后端直接出数据,不应该让前端折腾. 这个嘛,行列转换在后端也不是很好解决的问题,而且还有一个性能的问题,综合考虑,我还是觉得应该由前端进行行列转换.光说不练假把式,所以拿出来代码仅作为抛砖引玉,供大家参考一下,如果有更好的方法,欢迎一起来探讨. 1.模板设计. <div id="app"> <table class="

  • Python 中导入csv数据的三种方法

    Python 中导入csv数据的三种方法,具体内容如下所示: 1.通过标准的Python库导入CSV文件: Python提供了一个标准的类库CSV文件.这个类库中的reader()函数用来导入CSV文件.当CSV文件被读入后,可以利用这些数据生成一个NumPy数组,用来训练算法模型.: from csv importreader import numpy as np filename=input("请输入文件名: ") withopen(filename,'rt',encoding='

  • Pandas修改DataFrame列名的两种方法实例

    目录 解决方法1:通过DataFrame.columns类的自身属性修改 1.暴力修改 2.stirp方法 3.lambda表达式 解决方法2:通过DataFrame.rename()函数修改 1.暴力修改(可以只修改部分列名) 2.lambda表达式 pandas更改DataFrame的行名或列名实例 更改列名 更改行名 总结 输入: $a $b $c $d $e 0 1 2 3 4 5 期望的输出: a  b  c  d  e0  1  2  3  4  5 原数据DataFrame: im

  • Pandas保存csv数据的三种方式详解

    目录 方法一 方法二 方法三 补充 方法一 import os import pandas as pd path = 'data/train/' img_label_list=[] testList = os.listdir(path) for file in testList: label='aa' img_label_list.append([file, label]) df1 = pd.DataFrame(data=img_label_list, columns=['id', 'label

  • pandas检查和填充缺失值的N种方法总结

    目录 一.构建示例数据 二.检查缺失值的n种方法 2.1 确认是否有缺失值的两种方法 2.2 查看缺失数目和缺失率 2.3 查看非缺失值数目 三.缺失值填充三种示例 一.构建示例数据 import pandas as pd import numpy as np data = {"ID":[202001, 202002, 202003, 202004, 202005, 202006, 202007, 202008, 202009, 202010], "Chinese"

  • AJAX跨域请求数据的四种方法(实例讲解)

    由于浏览器的同源策略 ajax请求不可以接收到请求响应回来的数据 请求数据需要调用浏览器的内置构造函数 XMLHttpRequest() 进行 实例对象 var xhr = new XMLHttpRequest(); 注意点 在IE8之前支持的 ActiveXobject("Microsoft.XMLHTTP");  记住要进行兼容处理哦  在这里我就不写了 通过该对象进行获取 获取数据的四种状态  xhr.readyState 该属性保存着请求数据的几种状态 1.xhr.open(请

  • 使用Java构造和解析Json数据的两种方法(详解二)

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,采用完全独立于语言的文本格式,是理想的数据交换格式.同时,JSON是 JavaScript 原生格式,这意味着在 JavaScript 中处理 JSON数据不须要任何特殊的 API 或工具包. 在www.json.org上公布了很多JAVA下的json构造和解析工具,其中org.json和json-lib比较简单,两者使用上差不多但还是有些区别.下面接着介绍用org.json构造和解析Json数据的方法

随机推荐