python使用OpenCV模块实现图像的融合示例代码

可以通过OpenCV函数cv.add()或简单地通过numpy操作添加两个图像,res = img1 + img2.两个图像应该具有相同的深度和类型,或者第二个图像可以是标量值.

三种融合

注意融合时,一般来说两个图像的尺寸是一样大小的,如果大小不一样,需要把大的图像的某一部分先截出来,与小的图先融合,再作为整体替换掉原来大图中抠出的小图部分。

"""
# @Time  : 2020/4/3
# @Author : JMChen
"""
import cv2 as cv

img1 = cv.imread('logo.png')
img2 = cv.imread('lena.png')
# 在lena.png获取和logo.png大小相同的ROI
rows, cols, channels = img1.shape
img_ROI1 = img2[0:rows, 0:cols]

img_ROI2 = cv.addWeighted(img1, 0.7, img_ROI1, 0.3, 0)
img2[0:rows, 0:cols] = img_ROI2

# 显示混合后的图片
cv.imshow('img2', img2)
cv.waitKey(0)

# 将两幅图像(lena.png)+ (logo.png)进行融合
img2 = cv.imread('lena.png')
# 1,在lena.png获取和logo.png大小相同的ROI
img_ROI1 = img2[0:rows, 0:cols]

# 2,基于logo.png的灰度图,利用简单的阈值分割创建一个掩模
img1_gray = cv.cvtColor(img1, cv.COLOR_BGR2GRAY)
ret, mask = cv.threshold(img1_gray, 10, 255, cv.THRESH_BINARY)
mask_inv = cv.bitwise_not(mask)

# 3,与掩模进行按位与操作,去掉logo中非0部分,得到新的图
new_img2 = cv.bitwise_and(img_ROI1, img_ROI1, mask=mask_inv)

# 4,将新图与logo相加,然后将这一部分替换掉原始图像的img_ROI1部分
dst = cv.add(img1, new_img2)
img2[0:rows, 0:cols] = dst

cv.imshow('res', img2)
cv.waitKey(0)
cv.destroyAllWindows()

# 实现另一种融合
img2 = cv.imread('lena.png')
img_ROI1 = img2[0:rows, 0:cols]

dst_1 = cv.addWeighted(img_ROI1, 0.55, dst, 0.45, 0)
img2[0:rows, 0:cols] = dst_1

cv.imshow('res_2', img2)
cv.waitKey(0)
cv.destroyAllWindows()

效果如下:

相关的比例参数可以自己按需调

到此这篇关于python使用OpenCV模块实现图像的融合示例代码的文章就介绍到这了,更多相关OpenCV 图像融合内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python+OpenCV实现图像融合的原理及代码

    根据导师作业安排,在学习数字图像处理(刚萨雷斯版)第六章 彩色图像处理 中的彩色模型后,导师安排了一个比较有趣的作业: 融合原理为: 1 注意:遥感原RGB图image和灰度图Grayimage为测试用的输入图像: 2 步骤:(1)将RGB转换为HSV空间(H:色调,S:饱和度,V:明度): (2)用Gray图像诶换掉HSV中的V: (3)替换后的HSV转换回RGB空间即可得到结果. 书上只介绍了HSI彩色模型,并没有说到HSV,所以需要网上查找资料. Python代码如下: import cv

  • opencv中图像叠加/图像融合/按位操作的实现

    一.图像叠加:cv2.add res=cv2.add(img1, img2) 或者res=cv2.add(img1, 标量值) 参数说明: cv2.add将两个图片对应位置的像素的值相加,或者将每个像素的值加上一个标量值,大于255的像素值就设置成255. 有一点需要注意的是,如果是两张图片相加,那么一定要注意两者的尺寸和通道数必须是一样的:如果是标量值,这个值既可以是整数也可以是浮点数,加合适的标量值一般是为了提高亮度. import cv2 img1 = cv2.imread('1.jpg'

  • python使用OpenCV模块实现图像的融合示例代码

    可以通过OpenCV函数cv.add()或简单地通过numpy操作添加两个图像,res = img1 + img2.两个图像应该具有相同的深度和类型,或者第二个图像可以是标量值. 三种融合 注意融合时,一般来说两个图像的尺寸是一样大小的,如果大小不一样,需要把大的图像的某一部分先截出来,与小的图先融合,再作为整体替换掉原来大图中抠出的小图部分. """ # @Time : 2020/4/3 # @Author : JMChen """ impor

  • Python编程pygame模块实现移动的小车示例代码

    Pygame是跨平台Python模块,专为电子游戏设计,包含图像.声音.建立在SDL基础上,允许实时电子游戏研发而无需被低级语言(如机器语言和汇编语言)束缚. 最近一个星期学习了一下python的pygame模块,顺便做个小程序巩固所学的,运行效果如下: 其中,背景图"highway.jpg"是使用PhotoShop将其分辨率改变为640 × 480,而小车"car.png"则是将其转变为png格式的图片,并且填充其背景色,让其拥有透明性. 代码测试可用: # -*

  • Python 利用OpenCV给照片换底色的示例代码

    OpenCV的全称是:Open Source Computer Vision Library.OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法.相比于PIL库来说OpenCV更加强大, 可以做更多更复杂的应用,比如人脸识别等. 1. 读入并显示图片 im

  • Python使用pickle模块存储数据报错解决示例代码

    本文研究的主要是Python使用pickle模块存储数据报错解决方法,以代码的形式展示,具体如下. 首先来了解下pickle模块 pickle提供了一个简单的持久化功能.可以将对象以文件的形式存放在磁盘上. pickle模块只能在python中使用,python中几乎所有的数据类型(列表,字典,集合,类等)都可以用pickle来序列化, pickle序列化后的数据,可读性差,人一般无法识别. 接下来我们看下Python使用pickle模块存储数据报错解决方法. 代码: # 写入错误 TypeEr

  • python基于OpenCV模块实现视频流数据切割为图像帧数据(流程分析)

    动态视频流数据的处理可以转化为静态图像帧的处理,这样就可以在不改动图像模型的情况下实现视频流数据的处理工作,当然视频流数据也可以采用视频的处理方法来直接处理,这里今天主要是实践一下视频流数据的预处理工作,即:将视频流数据切割为图像帧数据,实践内容很简单,具体如下所示: #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 功能: 视频数据切割成图像数据 ''' import os import cv2 import numpy as n

  • 使用Python的OpenCV模块识别滑动验证码的缺口(推荐)

    最近终于找到一个好的方法,使用Python的OpenCV模块识别滑动验证码的缺口,可以将滑动验证码中的缺口识别出来了. 测试使用如下两张图片: target.jpg template.png 现在想要通过"template.png"在"target.jpg"中找到对应的缺口,代码实现如下: # encoding=utf8 import cv2 import numpy as np def show(name): cv2.imshow('Show', name) cv

  • Python使用matplotlib模块绘制图像并设置标题与坐标轴等信息示例

    本文实例讲述了Python使用matplotlib模块绘制图像并设置标题与坐标轴等信息.分享给大家供大家参考,具体如下: 进行图像绘制有时候需要设定坐标轴以及图像标题等信息,示例代码如下: #-*- coding: utf-8 -*- #!/usr/bin/python import matplotlib.pyplot as plt from numpy.random import randn x = range(100) y = randn(100) fig = plt.figure() ax

  • python用opencv批量截取图像指定区域的方法

    代码如下 import os import cv2 for i in range(1,201): if i==169 or i==189: i = i+1 pth = "C:\\Users\\Desktop\\asd\\"+str(i)+".bmp" image = cv2.imread(pth) //从指定路径读取图像 cropImg = image[600:1200,750:1500] //获取感兴趣区域 cv2.imwrite("C:\\Users\

  • 如何使用Python的OpenCV库处理图像和视频

    目录 介绍 计算机视觉 OpenCV 应用: 安装 使用 OpenCV 处理图像 1. 从文件中读取图像 2. 调整图像大小: 3. 旋转图像 4. 翻转图像: 5. 重写图像 6. 裁剪图像 7. 绘制形状 使用 OpenCV 处理视频 1. 捕获视频帧的属性: 2. 读取视频文件 3. 编写视频文件 结论 总结 介绍 众所周知,计算机视觉在机器学习和人工智能领域获得了巨大的普及.图像识别技术允许计算机处理比人眼更多的信息,通常更快.更准确,或者只是在人们不参与观看的情况下处理.因此,你可能想

  • python中opencv K均值聚类的实现示例

    目录 K均值聚类 K均值聚类的基本步骤 K均值聚类模块 简单例子 K均值聚类 预测的是一个离散值时,做的工作就是“分类”. 预测的是一个连续值时,做的工作就是“回归”. 机器学习模型还可以将训练集中的数据划分为若干个组,每个组被称为一个“簇(cluster)”.这种学习方式被称为“聚类(clusting)”,它的重要特点是在学习过程中不需要用标签对训练样本进行标注.也就是说,学习过程能够根据现有训练集自动完成分类(聚类). 根据训练数据是否有标签,可以将学习划分为监督学习和无监督学习. K近邻.

随机推荐