C++11新特性之智能指针(shared_ptr/unique_ptr/weak_ptr)

shared_ptr基本用法

shared_ptr采用引用计数的方式管理所指向的对象。当有一个新的shared_ptr指向同一个对象时(复制shared_ptr等),引用计数加1。当shared_ptr离开作用域时,引用计数减1。当引用计数为0时,释放所管理的内存。

这样做的好处在于解放了程序员手动释放内存的压力。之前,为了处理程序中的异常情况,往往需要将指针手动封装到类中,通过析构函数来释放动态分配的内存;现在这一过程就可以交给shared_ptr去做了。

一般我们使用make_shared来获得shared_ptr。

cout<<"test shared_ptr base usage:"<<endl;
shared_ptr<string> p1 = make_shared<string>("");
if(p1 && p1->empty())
*p1 = "hello";

auto p2 = make_shared<string>("world");
cout<<*p1<<' '<<*p2<<endl;

cout<<"test shared_ptr use_count:"<<endl;
cout<<"p1 cnt:"<<p1.use_count()<<"\tp2 cnt:"<<p2.use_count()<<endl;

auto p3 = p2;
cout<<"p1 cnt:"<<p1.use_count()<<"\tp2 cnt:"<<p2.use_count()<<"\tp3 cnt:"<<p3.use_count()<<endl;
p2 = p1;
cout<<"p1 cnt:"<<p1.use_count()<<"\tp2 cnt:"<<p2.use_count()<<"\tp3 cnt:"<<p3.use_count()<<endl;

shared_ptr和new

shared_ptr可以使用一个new表达式返回的指针进行初始化。

cout<<"test shared_ptr and new:"<<endl;
shared_ptr<int> p4(new int(1024));
//shared_ptr<int> p5 = new int(1024); // wrong, no implicit constructor
cout<<*p4<<endl;

但是,不能将一个new表达式返回的指针赋值给shared_ptr。

另外,特别需要注意的是,不要混用new和shared_ptr!

void process(shared_ptr<int> ptr)
{
cout<<"in process use_count:"<<ptr.use_count()<<endl;
}

cout<<"don't mix shared_ptr and normal pointer:"<<endl;
shared_ptr<int> p5(new int(1024));
process(p5);
int v5 = *p5;
cout<<"v5: "<<v5<<endl;

int *p6 = new int(1024);
process(shared_ptr<int>(p6));
int v6 = *p6;
cout<<"v6: "<<v6<<endl;

上面的程序片段会输出:

in process use_count:2
v5: 1024
in process use_count:1
v6: 0
可以看到,第二次process p6时,shared_ptr的引用计数为1,当离开process的作用域时,会释放对应的内存,此时p6成为了悬挂指针。

所以,一旦将一个new表达式返回的指针交由shared_ptr管理之后,就不要再通过普通指针访问这块内存!

shared_ptr.reset

shared_ptr可以通过reset方法重置指向另一个对象,此时原对象的引用计数减一。

cout<<"test shared_ptr reset:"<<endl;
cout<<"p1 cnt:"<<p1.use_count()<<"\tp2 cnt:"<<p2.use_count()<<"\tp3 nt:"<<p3.use_count()<<endl;
p1.reset(new string("cpp11"));
cout<<"p1 cnt:"<<p1.use_count()<<"\tp2 cnt:"<<p2.use_count()<<"\tp3 cnt:"<<p3.use_count()<<endl;
shared_ptr deleter

可以定制一个deleter函数,用于在shared_ptr释放对象时调用。

void print_at_delete(int *p)
{
cout<<"deleting..."<<p<<'\t'<<*p<<endl;
delete p;
}

cout<<"test shared_ptr deleter:"<<endl;
int *p7 = new int(1024);
shared_ptr<int> p8(p7, print_at_delete);
p8 = make_shared<int>(1025);

unique_ptr基本用法

unique_ptr对于所指向的对象,正如其名字所示,是 独占 的。所以,不可以对unique_ptr进行拷贝、赋值等操作,但是可以通过release函数在unique_ptr之间转移控制权。

cout<<"test unique_ptr base usage:"<<endl;
unique_ptr<int> up1(new int(1024));
cout<<"up1: "<<*up1<<endl;
unique_ptr<int> up2(up1.release());
cout<<"up2: "<<*up2<<endl;
//unique_ptr<int> up3(up1); // wrong, unique_ptr can not copy
//up2 = up1; // wrong, unique_ptr can not copy
unique_ptr<int> up4(new int(1025));
up4.reset(up2.release());
cout<<"up4: "<<*up4<<endl;

unique_ptr作为参数和返回值

上述对于拷贝的限制,有两个特殊情况,即unique_ptr可以作为函数的返回值和参数使用,这时虽然也有隐含的拷贝存在,但是并非不可行的。

unique_ptr<int> clone(int p)
{
return unique_ptr<int>(new int(p));
}

void process_unique_ptr(unique_ptr<int> up)
{
cout<<"process unique ptr: "<<*up<<endl;
}

cout<<"test unique_ptr parameter and return value:"<<endl;
auto up5 = clone(1024);
cout<<"up5: "<<*up5<<endl;
process_unique_ptr(move(up5));
//cout<<"up5 after process: "<<*up5<<endl; // would cause segmentfault

这里的std::move函数,以后再单独具体细说^_^

unique_ptr deleter

unique_ptr同样可以设置deleter,和shared_ptr不同的是,它需要在模板参数中指定deleter的类型。好在我们有decltype这个利器,不然写起来好麻烦。

cout<<"test unique_ptr deleter:"<<endl;
int *p9 = new int(1024);
unique_ptr<int, decltype(print_at_delete) *> up6(p9, print_at_delete);
unique_ptr<int> up7(new int(1025));
up6.reset(up7.release());

weak_ptr

weak_ptr一般和shared_ptr配合使用。它可以指向shared_ptr所指向的对象,但是却不增加对象的引用计数。这样就有可能出现weak_ptr所指向的对象实际上已经被释放了的情况。因此,weak_ptr有一个lock函数,尝试取回一个指向对象的shared_ptr。

cout<<"test weak_ptr basic usage:"<<endl;
auto p10 = make_shared<int>(1024);
weak_ptr<int> wp1(p10);
cout<<"p10 use_count: "<<p10.use_count()<<endl;
//p10.reset(new int(1025)); // this will cause wp1.lock() return a false obj
shared_ptr<int> p11 = wp1.lock();
if(p11) cout<<"wp1: "<<*p11<<" use count: "<<p11.use_count()<<endl;

总结

shared_ptr采用引用计数的方式管理所指向的对象。
shared_ptr可以使用一个new表达式返回的指针进行初始化;但是,不能将一个new表达式返回的指针赋值给shared_ptr。
一旦将一个new表达式返回的指针交由shared_ptr管理之后,就不要再通过普通指针访问这块内存。
shared_ptr可以通过reset方法重置指向另一个对象,此时原对象的引用计数减一。
可以定制一个deleter函数,用于在shared_ptr释放对象时调用。
unique_ptr对于所指向的对象,是独占的。
不可以对unique_ptr进行拷贝、赋值等操作,但是可以通过release函数在unique_ptr之间转移控制权。
unique_ptr可以作为函数的返回值和参数使用。
unique_ptr同样可以设置deleter,需要在模板参数中指定deleter的类型。
weak_ptr一般和shared_ptr配合使用。它可以指向shared_ptr所指向的对象,但是却不增加对象的引用计数。
weak_ptr有一个lock函数,尝试取回一个指向对象的shared_ptr。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • C++智能指针实例详解

    本文通过实例详细阐述了C++关于智能指针的概念及用法,有助于读者加深对智能指针的理解.详情如下: 一.简介 由于 C++ 语言没有自动内存回收机制,程序员每次 new 出来的内存都要手动 delete.程序员忘记 delete,流程太复杂,最终导致没有 delete,异常导致程序过早退出,没有执行 delete 的情况并不罕见. 用智能指针便可以有效缓解这类问题,本文主要讲解参见的智能指针的用法.包括:std::auto_ptr.boost::scoped_ptr.boost::shared_p

  • C++智能指针shared_ptr分析

    C++智能指针shared_ptr分析 概要: shared_ptr是c++智能指针中适用场景多,功能实现较多的智能指针.它采取引用计数的方法来实现释放指针所指向的资源.下面是我代码实现的基本功能. 实例代码: template<class T> class sharedptr { public: sharedptr(T* ptr) :_ptr(ptr) , _refCount(new int(1)) {} sharedptr(sharedptr<T>& sp) :_ptr

  • C++中的auto_ptr智能指针的作用及使用方法详解

    智能指针(auto_ptr) 这个名字听起来很酷是不是?其实auto_ptr 只是C++标准库提供的一个类模板,它与传统的new/delete控制内存相比有一定优势,但也有其局限.本文总结的8个问题足以涵盖auto_ptr的大部分内容.  auto_ptr是什么? auto_ptr 是C++标准库提供的类模板,auto_ptr对象通过初始化指向由new创建的动态内存,它是这块内存的拥有者,一块内存不能同时被分给两个拥有者.当auto_ptr对象生命周期结束时,其析构函数会将auto_ptr对象拥

  • C++智能指针读书笔记

    最近在补看<C++ Primer Plus>第六版,这的确是本好书,其中关于智能指针的章节解析的非常清晰,一解我以前的多处困惑.C++面试过程中,很多面试官都喜欢问智能指针相关的问题,比如你知道哪些智能指针?shared_ptr的设计原理是什么?如果让你自己设计一个智能指针,你如何完成?等等--.而且在看开源的C++项目时,也能随处看到智能指针的影子.这说明智能指针不仅是面试官爱问的题材,更是非常有实用价值. C++通过一对运算符 new 和 delete 进行动态内存管理,new在动态内存中

  • C++ 智能指针的模拟实现实例

    C++ 智能指针的模拟实现实例 1.引入 int main() { int *p = new int; //裸指针 delete p; return 0; } 在上面的代码中定义了一个裸指针p,需要我们手动释放.如果我们一不小心忘记释放这个指针或者在释放这个指针之前,发生一些异常,会造成严重的后果(内存泄露).而智能指针也致力于解决这种问题,使程序员专注于指针的使用而把内存管理交给智能指针. 普通指针也容易出现指针悬挂问题,当有多个指针指向同一个对象的时候,如果某一个指针delete了这个对象,

  • C++ 中boost::share_ptr智能指针的使用方法

    C++ 中boost::share_ptr智能指针的使用方法 最近项目中使用boost库的智能指针,感觉智能指针还是蛮强大的,在此贴出自己学习过程中编写的测试代码,以供其他想了解boost智能指针的朋友参考,有讲得不正确之处欢迎指出讨论.当然,使用boost智能指针首先要编译boost库,具体方法可以网上查询,在此不再赘述. 智能指针能够使C++的开发简单化,主要是它能够自动管理内存的释放,而且能够做更多的事情,即使用智能指针,则可以再代码中new了之后不用delete,智能指针自己会帮助你管理

  • C++中auto_ptr智能指针的用法详解

    智能指针(auto_ptr) 这个名字听起来很酷是不是?其实auto_ptr 只是C++标准库提供的一个类模板,它与传统的new/delete控制内存相比有一定优势,但也有其局限.本文总结的8个问题足以涵盖auto_ptr的大部分内容. auto_ptr是什么? auto_ptr 是C++标准库提供的类模板,auto_ptr对象通过初始化指向由new创建的动态内存,它是这块内存的拥有者,一块内存不能同时被分给两个拥有者.当auto_ptr对象生命周期结束时,其析构函数会将auto_ptr对象拥有

  • 关于c++ 智能指针及 循环引用的问题

    c++智能指针介绍 由于 C++ 语言没有自动内存回收机制,程序员每次 new 出来的内存都要手动 delete,比如流程太复杂,最终导致没有 delete,异常导致程序过早退出,没有执行 delete 的情况并不罕见,并造成内存泄露.如此c++引入 智能指针 ,智能指针即是C++ RAII的一种应用,可用于动态资源管理,资源即对象的管理策略. 智能指针在 <memory>标头文件的 std 命名空间中定义. 它们对 RAII 或 获取资源即初始化 编程惯用法至关重要. RAII 的主要原则是

  • C++ 智能指针深入解析

    1. 为什么需要智能指针?简单的说,智能指针是为了实现类似于Java中的垃圾回收机制.Java的垃圾回收机制使程序员从繁杂的内存管理任务中彻底的解脱出来,在申请使用一块内存区域之后,无需去关注应该何时何地释放内存,Java将会自动帮助回收.但是出于效率和其他原因(可能C++设计者不屑于这种傻瓜氏的编程方式),C++本身并没有这样的功能,其繁杂且易出错的内存管理也一直为广大程序员所诟病. 更进一步地说,智能指针的出现是为了满足管理类中指针成员的需要.包含指针成员的类需要特别注意复制控制和赋值操作,

  • C++中智能指针如何设计和使用

    智能指针(smart pointer)是存储指向动态分配(堆)对象指针的类,用于生存期控制,能够确保自动正确的销毁动态分配的对象,防止内存泄露.它的一种通用实现技术是使用引用计数(reference count).智能指针类将一个计数器与类指向的对象相关联,引用计数跟踪该类有多少个对象共享同一指针.每次创建类的新对象时,初始化指针并将引用计数置为1:当对象作为另一对象的副本而创建时,拷贝构造函数拷贝指针并增加与之相应的引用计数:对一个对象进行赋值时,赋值操作符减少左操作数所指对象的引用计数(如果

随机推荐