python基于xml parse实现解析cdatasection数据

本文实例讲述了python基于xml parse实现解析cdatasection数据的方法,分享给大家供大家参考。

具体实现方法如下:

from xml.dom.minidom import * 

implementation = DOMImplementation() 

print "Core:%s" % implementation.hasFeature('core', '2.0')
print "Events:%s" % implementation.hasFeature('Events', '2.0')
print "Traversal:%s" % implementation.hasFeature('Traversal', '2.0')
print "Views:%s" % implementation.hasFeature('Views', '2.0')
print "features:%s" % implementation._features 

dom = parse("result.xml")
domRoot = dom.documentElement
print domRoot
print domRoot.nodeType
print "ELEMENT_NODE:%s " % dom.ELEMENT_NODE
print "ATTRIBUTE_NODE:%s " % dom.ATTRIBUTE_NODE 

children = domRoot.childNodes
for child in children:
  print "child_get_tagName:%s" % child._get_tagName()
  print "child_get_localName:%s" % child._get_localName()
  print "child.hasChildNodes:%s" % child.hasChildNodes()
  if child._get_tagName() == "files_rg":
    files = child._get_childNodes()
    for file in files:
      if file.nodeType == dom.ELEMENT_NODE:
        for node in file._get_childNodes():
          print "node.childNodes:%s ",node._get_childNodes()
          for cdataSection in node._get_childNodes():
            if cdataSection.nodeType == dom.CDATA_SECTION_NODE:
              print "cdataSection._get_data:%s %s " % (cdataSection._get_localName(),cdataSection._get_data())

希望本文所述对大家的Python程序设计有所帮助。

(0)

相关推荐

  • python抓取某汽车网数据解析html存入excel示例

    1.某汽车网站地址 2.使用firefox查看后发现,此网站的信息未使用json数据,而是简单那的html页面而已 3.使用pyquery库中的PyQuery进行html的解析 页面样式: 复制代码 代码如下: def get_dealer_info(self):        """获取经销商信息"""        css_select = 'html body div.box div.news_wrapper div.main div.ne

  • 浅谈Python中数据解析

    Import os; -- Python自带 print(os.getcwd()) -- 获得当前工作目录 os.chdir('/Users/longlong/Documents') -- 转换到/Users/longlong/Documents目录 os.path.join(parm1, parm2,...) -- 从一个或多个路径片段中构造一个路径名. os.path.expanduser() -- 用来将包含-符号的路径扩展为完整的路径 复制代码 代码如下: >>> pathnam

  • python解析发往本机的数据包示例 (解析数据包)

    tcp.py 复制代码 代码如下: # -*- coding: cp936 -*-import socketfrom struct import *from time import ctime,sleepfrom os import system system('title tcp sniffer')system('color 05') # the public network interfaceHOST = socket.gethostbyname(socket.gethostname())

  • python解析中国天气网的天气数据

    使用方法:terminal中输入 复制代码 代码如下: python weather.py http://www.weather.com.cn/weather/101010100.shtml 北京6天的天气数据 json格式 复制代码 代码如下: #coding=utf-8  #weather.py  import urllib  import re  import simplejson  import sys if len(sys.argv) != 2:      print 'please

  • 详细解析Python当中的数据类型和变量

    数据类型 计算机顾名思义就是可以做数学计算的机器,因此,计算机程序理所当然地可以处理各种数值.但是,计算机能处理的远不止数值,还可以处理文本.图形.音频.视频.网页等各种各样的数据,不同的数据,需要定义不同的数据类型.在Python中,能够直接处理的数据类型有以下几种: 整数 Python可以处理任意大小的整数,当然包括负整数,在程序中的表示方法和数学上的写法一模一样,例如:1,100,-8080,0,等等. 计算机由于使用二进制,所以,有时候用十六进制表示整数比较方便,十六进制用0x前缀和0-

  • python基于xml parse实现解析cdatasection数据

    本文实例讲述了python基于xml parse实现解析cdatasection数据的方法,分享给大家供大家参考. 具体实现方法如下: from xml.dom.minidom import * implementation = DOMImplementation() print "Core:%s" % implementation.hasFeature('core', '2.0') print "Events:%s" % implementation.hasFea

  • python读取xml文件方法解析

    关于python读取xml文章很多,但大多文章都是贴一个xml文件,然后再贴个处理文件的代码.这样并不利于初学者的学习,希望这篇文章可以更通俗易懂的教如何使用python来读取xml文件. 什么是xml? xml即可扩展标记语言,它可以用来标记数据.定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言. abc.xml <?xml version="1.0" encoding="utf-8"?> <catalog> <maxid

  • python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

    一.环境准备 python3.8.3 pycharm 项目所需第三方包 pip install scrapy fake-useragent requests selenium virtualenv -i https://pypi.douban.com/simple 1.1 创建虚拟环境 切换到指定目录创建 virtualenv .venv 创建完记得激活虚拟环境 1.2 创建项目 scrapy startproject 项目名称 1.3 使用pycharm打开项目,将创建的虚拟环境配置到项目中来

  • 解读python基于netconf协议获取网元的数据

    [原理介绍] 通过NETCONF,网管能够用可视化的界面统一管理网络中的设备,并且安全性高.可靠性强.扩展性强.如下图所示,网管与网络中的所有交换机之间建立NETCONF会话,用户即可在网管提供的可视化界面上对网络中的所有交换机进行统一的管理,提高网络运维效率. 网管通过NETCONF对设备进行管理组网图 [开发流程介绍] 首先进行网元的配置开通netconf协议相关篇配置,然后编写python调用netconf模块: [网元配置] 登录ne40e的管理口,按照如下命令配置,配置说明参见上面图示

  • Python基于滑动平均思想实现缺失数据填充的方法

    在时序数据处理过程中,我们经常会遇到由于现实中的种种原因导致获取的数据缺失的情况,这里的数据缺失不单单是指为'NaN'的数据,比如在AQI数据中,0是不可能出现的,这时候如果数据中出现了0也就是数据缺失了,最近正好在拿一个污染物的数据在做模型分析,中间就遇到了数据缺失值的问题,数据量本身不大,如果直接对缺失值进行丢弃处理的话会进一步减小数据量,所以这里考虑采用数据填充的方法来实现缺失数据的填充.我做了两个版本其中,第一个版本很简单可以不看,主要是简单实现以下效果.具体实现如下: #!usr/bi

  • Python基于pandas爬取网页表格数据

    以网页表格为例:https://www.kuaidaili.com/free/ 该网站数据存在table标签,直接用requests,需要结合bs4解析正则/xpath/lxml等,没有几行代码是搞不定的. 今天介绍的黑科技是pandas自带爬虫功能,pd.read_html(),只需传人url,一行代码搞定. 原网页结构如下: python代码如下: import pandas as pd url='http://www.kuaidaili.com/free/' df=pd.read_html

  • Python基于dom操作xml数据的方法示例

    本文实例讲述了Python基于dom操作xml数据的方法.分享给大家供大家参考,具体如下: 1.xml的内容为del.xml,如下 <?xml version="1.0" encoding="utf-8"?> <catalog> <maxid>4</maxid> <login username="pytest" passwd='123456'> <caption>Python

  • python解析基于xml格式的日志文件

    大家中午好,由于过年一直还没回到状态,好久没分享一波小知识了,今天,继续给大家分享一波Python解析日志的小脚本. 首先,同样的先看看日志是个啥样. 都是xml格式的,是不是看着就头晕了??没事,我们先来分析一波. 1.每一段开头都是catalina-exec,那么我们就按catalina-exec来分,分了之后,他们就都是一段一段的了. 2.然后,我们再在已经分好的一段段里面分,找出你要分割的关键字,因为是xml的,所以,接下来的工作就简单了,都是一个头一个尾的. 3.但是还有一个问题,有可

  • Python 3.x基于Xml数据的Http请求方法

    1. 前言 由于公司的一个项目是基于B/S架构与WEB服务通信,使用XML数据作为通信数据,在添加新功能时,WEB端与客户端分别由不同的部门负责,所以在WEB端功能实现过程中,需要自己发起请求测试,于是便选择了使用Python编写此脚本.另外由于此脚本最开始希望能在以后发展成具有压力测试的功能,所以除了基本的访问之外,添加了多线程请求. 整个脚本主要涉及到的关于Python的知识点包括: 基于urllib.request的Http访问 多线程 类与方法的定义 全局变量的定义与使用 文件的读取与写

  • Python实现XML文件解析的示例代码

    1. XML简介 XML(eXtensible Markup Language)指可扩展标记语言,被设计用来传输和存储数据,已经日趋成为当前许多新生技术的核心,在不同的领域都有着不同的应用.它是web发展到一定阶段的必然产物,既具有SGML的核心特征,又有着HTML的简单特性,还具有明确和结构良好等许多新的特性. test.XML文件 <?xml version="1.0" encoding="utf-8"?> <catalog> <m

随机推荐